AAAI 2024 | CNC:用于无监督多类异常检测的跨模态正态约束

论文信息

题目:CNC: Cross-modal Normality Constraint for Unsupervised Multi-class Anomaly Detection
CNC:用于无监督多类异常检测的跨模态正态约束
作者:Xiaolei Wang, Xiaoyang Wang, Huihui Bai, Eng Gee Lim, Jimin Xiao

论文创新点

  1. 跨模态正态约束(CNC):论文提出了一种新的跨模态正态约束方法,利用类别无关的可学习提示来捕捉不同视觉模式中的常见文本正态性,并引导解码特征朝向“正常”文本表示,从而抑制解码器对异常模式的过度泛化(OG)
  2. 门控专家混合模块(MoE):为了处理多类训练中不同补丁模式之间的相互干扰,论文引入了
### AAAI 2024会议中目标检测研究论文及相关信息 #### 关于AAAI 2024会议的目标检测研究动 AAAI (Association for the Advancement of Artificial Intelligence) 是人工智能领域的重要国际学术会议之一。对于即将举行的AAA I2024,在目标检测这一热门方向上预计将会有众多高质量的研究成果展示。 虽然具体接受的论文列表尚未公布,基于以往的趋势以及当前计算机视觉特别是目标检测技术的发展状况可以推测,此次会议上可能会涉及以下几个方面的新进展: - **改进现有框架**:进一步优化现有的两阶段和单阶段检测器架构,如Faster R-CNN、RetinaNet 和 FCOS等模型[^1]。 - **轻量化设计**:针对边缘设备的应用需求,开发更加紧凑高效的网络结构,以实现低功耗下的高性能表现。 - **多模融合**:探索如何有效结合不同传感器获取的数据(例如RGB-D图像),从而提升复杂场景下物体识别的效果。 为了获得最准确的信息,建议关注官方渠道发布的最新通知或通过搜索引擎查询“AAAI 2024 accepted papers”,这通常会提供完整的收录文章清单链接。此外,也可以访问大会官方网站查看议程安排和技术报告摘要等内容。 ```python import requests from bs4 import BeautifulSoup def fetch_conference_papers(conference_name, year): url = f"https://www.aaai.org/Conferences/conference.php?conf={conference_name.lower()}&year={year}" response = requests.get(url) soup = BeautifulSoup(response.text, 'html.parser') paper_links = [] for link in soup.find_all('a'): href = link.get('href') if "papers" in str(href).lower(): paper_links.append(f"https://www.aaai.org/{href}") return paper_links[:5] # Example usage fetch_conference_papers("AAAI", 2024) ``` 此段Python代码可以帮助自动化检索特定年份内指定会议的相关论文页面链接作为初步筛选工具。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小白学视觉

您的赞赏是我们坚持下去的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值