CVPR 2024 | 通过缓解共同类偏差实现通用半监督域适应

论文信息

题目:Universal Semi-Supervised Domain Adaptation by Mitigating Common-Class Bias
通过缓解共同类偏差实现通用半监督域适应
作者:Wenyu Zhang, Qingmu Liu, Felix Ong Wei Cong, Mohamed Ragab, Chuan-Sheng Foo

论文创新点

  1. 提出通用半监督域适应(UniSSDA)的新设置:本文首次提出了通用半监督域适应(UniSSDA),这是一个结合了**通用域适应(UniDA)半监督域适应(SSDA)**的新设置。
  2. 揭示现有方法的共同类偏差问题:本文通过实验发现,现有的 SSDA 和 UniDA 方法在 UniSSDA 设置中容易受到
### 半监督医学图像分割的研究进展 对于半监督医学图像分割领域,最新的研究集中在如何利用有限的标注数据和大量的未标注数据来提高模型性能。一项重要工作提出了跨补丁密集对比学习框架,旨在解决组织病理学图像分割中标记数据成本高昂的问题[^3]。 另一项研究表明,通过不同iable神经网络拓扑搜索(DiNTS),可以有效提升三维医学图像分割的效果[^2]。该方法不仅提高了分割精度,还在计算效率上有显著改进。 针对CVPR 2024会议上的相关内容,虽然具体议程尚未公布,但基于以往趋势以及当前热门话题预测,预计会有更多关于: - 利用自监督预训练技术改善下游任务表现 - 结合多模态数据进行更精准的病变检测与分 - 探索新的损失函数设计以促进更好泛化能力等方面的新成果被报道 为了获取最前沿的信息,建议关注CVPR官方网站发布的最新消息,并查阅ArXiv等平台上的预印本论文库,这些资源通常会提前发布即将发表的工作摘要或全文链接。 ```python import requests from bs4 import BeautifulSoup def fetch_cvpr_papers(year=2024, keyword="semi-supervised medical image segmentation"): url = f"https://openaccess.thecvf.com/CVPR{year}?term={keyword.replace(' ', '+')}" response = requests.get(url) soup = BeautifulSoup(response.text, 'html.parser') papers = [] for item in soup.find_all('dt'): title = item.a.text.strip() link = "https://openaccess.thecvf.com/" + item.a['href'] abstract = item.find_next_sibling('dd').text.strip().split('\n')[1].strip() paper_info = { "title": title, "link": link, "abstract": abstract[:150]+'...' if len(abstract)>150 else abstract } papers.append(paper_info) return papers papers = fetch_cvpr_papers() for idx, paper in enumerate(papers[:5], start=1): print(f"{idx}. {paper['title']}\n Link: {paper['link']}\n Abstract: {paper['abstract']}\n") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小白学视觉

您的赞赏是我们坚持下去的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值