上面的电流源依次是:直流交流都存在的瞬时值,直流,正弦交流量的向量,交流,交流有效值
现在讨论的是在△的条件下,△ib与△ube的关系及其他△量之间的关系
由上图可以看出来,在△的那个范围里,ube和ib近似于是线性的,就可以用rbe等效,Q点不同,rbe就不同,静态影响在这里体现出来
上面是一个双口网络,可以做混合参数模型(电路知识)
ube与ib和uce有关,为什么和uce有关呢?参照下面的三个图
已经有了上面的关系,现在想求的是每个△之间的关系,那么就做全微分
将微分量变成△量,然后进而改写
根据上面的式子,电压等于后面两个相加的话,那就是电压串联
电流相加的话就是两个电流并联,则得到了下面的等效电路图(条件是输入是低频小信号)
为什么是混合参数?因为里面的h都是不同的量纲(电路知识)
到底里面的h参数的含义是什么?
h11就是我们前面说的rbe,h12说是对uce的波动(没太懂),因为大于1v的时候不怎么变化了,所以就非常小,这个参数几乎可以忽略,上节课推导没考虑这个影响
h21实际上就是beta,h22表示的就是上面的b图那一族曲线的某一条线的上翘,大小与平缓相关
,也就是rce的等效电阻分之一,这个电阻非常大,大概百k,负载电阻没有达到可以和他媲美的时候,基本上就是算作断路,所以电阻分之一也基本上是很小的值,也可以忽略,所以就有了简化的h参数,也就是上节课的微变等效电路(撒花)
上图就是rbe的等效电路图
rbb撇就是基区的体电阻,这个电阻可以在手册上得到
re撇发射极的体电阻,因为掺杂了较高的浓度,所以电阻值比较小
rb撇e撇实际上就是pn结电阻,Ut/id(之前讲的),这里的id实际就是ie,实际上就是和ieq相关(也没太懂)
根据上面的那个电路推出来的,把小电阻忽略了
rb撇e撇就是pn结的动态等效电阻
上面这个应该就是之前推出来的那个式子,ut就是与温度相关的常数好像
这块ieq等于(1+beta)ieq,那么分子分母就会约分了,就可以写成下面的式子,为什么不写成这样呢?因为下面这么写没有物理意义,虽然式子是对的