《实变函数简明教程》,P115,第14题(利用Lebesgue控制收敛定理求函数列Lebesgue积分的极限)

《实变函数简明教程》,P115,第14题(利用Lebesgue控制收敛定理求函数列Lebesgue积分的极限)

P97,定理4.15(Lebesgue控制收敛定理)

  设 { f k } \left\{ { {f}_{k}} \right\} { fk} E ⊂ R n E\subset { {\mathbb{R}}^{n}} ERn上几乎处处收敛的可测函数列, lim ⁡ k → ∞   f k ( x ) = f ( x ) \underset{k\to \infty }{\mathop{\lim }}\,{ {f}_{k}}\left( x \right)=f\left( x \right) klimfk(x)=f(x),若存在非负函数 F F F,使得 F ∈ L ( E ) F\in L\left( E \right) FL(E)并且
∣ f k ( x ) ∣ ≤ F ( x )   ( x ∈ E ,   k = 1 , 2 , ⋯   ) , \left| { {f}_{k}}\left( x \right) \right|\le F\left( x \right)\text{ }\left( x\in E,\text{ }k=1,2,\cdots \right), fk(x)F(x) (xE, k=1,2,),
则函数 f f f及所有的 f k { {f}_{k}} fk都在 E E E上可积,且 lim ⁡ k → ∞   ∫ E f k ( x ) d x \underset{k\to \infty }{\mathop{\lim }}\,\int_{E}{f_k\left( x \right)dx} klimEfk(x)dx存在并等于 ∫ E f ( x ) d x \int_{E}{f\left( x \right)dx} Ef(x)dx

待解决问题

  求极限

  1. lim ⁡ k → ∞   ∫ 0 1 ln ⁡ ( k + x ) k e − x cos ⁡ x d x . \underset{k\to \infty }{\mathop{\lim }}\,\int_{0}^{1}{\frac{\ln \left( k+x \right)}{k}{ {e}^{-x}}\cos xdx}. klim01kln(k+x)excosxdx.
  2. lim ⁡ k → ∞   ∫ 0 1 k x 1 + k 2 x 2 sin ⁡ 5 k x d x . \underset{k\to \infty }{\mathop{\lim }}\,\int_{0}^{1}{\frac{k\sqrt{x}}{1+{ {k}^{2}}{ {x}^{2}}}{ {\sin }^{5}}kxdx}. klim011+k2x2kx sin5kxdx.

求解过程

第1小问

f k ( x ) = ln ⁡ ( k + x ) k e − x cos ⁡ x , k ≥ 1. { {f}_{k}}\left( x \right)=\frac{\ln \left( k+x \right)}{k}{ {e}^{-x}}\cos x,k\ge 1. fk(x)=kln(k+x)excosxk1.
下面对函数列 { f k } \left\{ { {f}_{k}} \right\} { fk}的性态逐一分析。

  1. 显然地, ln ⁡ ( k + x ) \ln \left( k+x \right) ln(k+x) e − x { {e}^{-x}} ex cos ⁡ x \cos x cosx都是可测集 [ 0 , 1 ] \left[ 0,1 \right] [0,1]上的连续函数。根据博文《实变函数简明教程》(邓东皋,常心怡编),第三章:可测函数,P63,关于 可测集上的连续函数一定可测 的说明,我们有
    ln ⁡ ( k + x ) ,   e − x ,   cos ⁡ x 都 是 [ 0 , 1 ] 上 的 可 测 函 数 。 \ln \left( k+x \right),\text{ }{ {e}^{-x}},\text{ }\cos x都是\left[ 0,1 \right]上的可测函数。 ln(k+x), ex, cosx[0,1]
    再由课本P60的定理3.2(可测函数的四则运算封闭性),得到
    f k 是 [ 0 , 1 ] 上 的 可 测 函 数 , ∀ k =

  • 5
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

此账号已停更

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值