定理 9.5
若 f f f 是区间 [ a , b ] [a, b] [a,b] 上只有有限个间断点的有界函数, 则 f f f 在 [ a , b ] [a, b] [a,b] 上可积.
证
不失一般性,这里只证明 f f f 在 [ a , b ] [a, b] [a,b]上仅有一个间断点的情形,并假设该间断点即为端点 b b b.
任给 ε > 0 \varepsilon>0 ε>0, 取 δ ′ \delta^{\prime} δ′ 满足 0 < δ ′ < ε 2 ( M − m ) 0<\delta^{\prime}<\frac{\varepsilon}{2(M-m)} 0<δ′<2(M−m)ε, 且 δ ′ < b − a \delta^{\prime}<b-a δ′<b−a, 其中 M M M 与 m m m 分别为 f f f 在