点云与图像融合的应用方向及研究建议、一图梳理3D目标检测发展脉络————基于图像、点云、融合的3D目标检测经典方法总结

一、前言

前些日子作者对点云与图像融合领域进行了一些调查,经过作者浅显的调查发现现今的“点云与图像融合”主要作为一种综合工程手段应用在3D目标检测(包括但不限于:车道线识别、距离估算、有遮挡的目标识别)等自动驾驶领域。因此在调研的过程中梳理了3D目标检测算法的主要实现方法,并对各种经典算法做了类别区分。

二、3D目标检测算法梳理

在这里插入图片描述

注:这里只给出了算法的缩写,就不单独给出算法的出处文献了。如果读者对某个具体的算法感兴趣,可以在百度搜索对应的缩写名称便能看到具体的介绍。

三、总结

经过这一番调研来看,目前的点云与图像融合主要被用于3D目标检测等任务
它提出的初衷是提高3D目标检测的精度,因为前几年提出的基于点云的目标检测算法的精准度不高;单独基于图像的检测又无法获得目标的3维信息。融合作为一种折中策略成为大多数学者的选择。但随着点云处理网络的不断更迭,现在单独基于点云的3D目标检测的精度已经大幅超越基于融合的方法。以图中提到的IA-SSD方法为例,它现在的识别精度已经能到90%以上,是目前最优秀的3D目标检测算法。如果单纯从提高算法对一般3D目标的检测精度这个出发点来说,点云与图像融合这项策略已经没有存在的必要了。而且客观实事是:这个领域的研究论文越来越少了。
当然,点云与图像融合在目标检测领域也并非一无是处。如果有小伙伴仍旧想研究这个方向,作者可以浅浅的给出几点建议:
1、将点云与图像融合的方法引入对特殊3D目标的检测,专供特定情况下的目标检测,比拼在处理特定目标时的精准度。例如:有遮挡的目标,体貌特征相似的目标(在点云成像中难以区分)。
2、偏向工程目标检测算法研究:一种全天候全时段的目标检测算法,将融合作为一种保证机制加入算法中,比如在点云不能很好的发挥作用的时候自动引入图像进行信息补全,进而做到精度加成。重点强调算法的稳健和全适用。
3、跳出目标检测的圈子,将点云与图像融合作为一种基础方法用来整合多传感器的信息,偏向理论指导。其实这才是融合的意义,不要局限于目标检测,偏向系统基层模块架构。

参考文献:
1、基于图像和点云融合的全天候三维车辆检测方法研究
2、Multi-View 3D Object Detection Network for Autonomous Driving

点云图像融合的YOLO v7是种基于深度学习的目标检测算法。YOLO(You Only Look Once)算法是种实时目标检测算法,在处理速度准确性方面具有优势。 点云是由3D激光雷达扫描获得的数据,主要描述了物体在三维空间中的位置形状。而图像则是由2D相机采集的数据,主要描述物体的外观纹理。将点云图像进行融合可以充分利用它们各自的优势,提高目标检测的准确性鲁棒性。 在YOLO v7中,首先通过点云处理模块,将点云数据转换为种可处理的形式,如将点云映射到图像平面上。然后,通过图像处理模块,对图像进行预处理,如调整大小、去噪等。接下来,将点云图像进行融合,可以采用多种方法,如将点云图像特征进行融合或者将它们分别输入到不同的子网络进行处理。 融合后的数据将输入到YOLO v7的主干网络中,通过系列卷积池化层,提取出较高级别的特征表示。然后,这些特征表示将被送入全连接层进行目标分类位置回归。最后,通过使用非极大抑制算法,去除重叠的候选框,得到最终的目标检测结果。 通过点云图像融合,YOLO v7在目标检测任务中能够获得更加准确的结果。点云提供了额外的深度位置信息,可以减少图像中的遮挡噪声对目标检测的影响。同时,图像提供了更加丰富的外观特征,可以增强点云数据的语义理解能力。综合利用点云图像的信息,可以提高目标检测的准确性鲁棒性,在自动驾驶、机器人导航等领域具有广阔的应用前景。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值