微分几何II 曲率

#高斯曲率 Ricci曲率#
高斯曲率
曲率在微分几何中的作用是重要的,它用来刻画曲面在各点处的弯曲程度。Gauss 早期就有惊人的发现:曲面在每一点的两个主曲率的乘积(称为高斯曲率)仅与曲面的第一基本形式有关,与曲面在 R 3 R^3 R3中出现的具体形状无关。也就是说曲面只与自身性质有关,与背景空间无关,这表示出内蕴性。

为了引入各种曲率,先定义一般形式的曲率算子的概念。然后衍生出不同的曲率。
定义:设(M,g)是m维仿射联络空间,对于任意的 X , Y X,Y X,Y属于光滑切空间 V ( M ) V(M) V(M),定义映射 如下,
R ( X , Y ) : V ( M ) → V ( M ) {\sf R}(X,Y):V(M) \rightarrow V(M) R(X,Y):V(M)V(M)
R ( X , Y ) Z = D X D Y Z − D Y D X Z − D [ X , Y ] Z ∀ Z ∈ V ( M ) {\sf R}(X,Y)Z=D_XD_YZ-D_YD_XZ-D_{[X,Y]}Z \quad\quad \forall Z\in V(M) R(X,Y)Z=DXDYZDYDXZD[X,Y]ZZV(M)
由此定义的 R ( X , Y ) {\sf R}(X,Y) R(X,Y)称为曲率算子
如果从张量角度考虑的话, R : V ( M ) × V ( M ) × V ( M ) → V ( M ) {\sf R} :V(M)\times V(M) \times V(M) \rightarrow V(M) R:V(M)×V(M)×V(M)V(M) R {\sf R} R是(1,3)型张量场
我们就此可以通过黎曼度量把上述 R {\sf R} R改一改定义成黎曼度量
定义四阶协变张量场
R : V ( M ) × V ( M ) × V ( M ) × V ( M ) → C ∞ ( M ) {R} :V(M)\times V(M) \times V(M)\times V(M) \rightarrow C^\infty (M) R:V(M)×V(M)×V(M)×V(M)C(M)
R ( X , Y , Z , W ) = g ( R ( Z , W ) X , Y ) ∀ X , Y , Z , W ∈ V ( M ) R(X,Y,Z,W)=g({\sf R}(Z,W)X,Y) \quad \forall X,Y,Z,W\in V(M) R(X,Y,Z,W)=g(R(Z,W)X,Y)X,Y,Z,WV(M)
R R R相当于用黎曼度量g来 度量两个切向量之间的距离。

在黎曼流形M中任取一点 p p p,对于 u , v ∈ T p ( M ) u,v \in T_p(M) u,vTp(M), 向量 u u u v v v围成的面积可用外积表示为 S = u ∧ v S=u \wedge v S=uv,则 ∣ ∣ ( u ∧ v ) ∣ ∣ 2 \mid \mid(u \wedge v)\mid \mid ^{2} (uv)2表示 u u u v v v围成面积的平方,把 u u u v v v张成的二维子空间记作 [ u , v ] [u,v] [u,v],称为M在 p p p点的二维截面。考虑二维子空间 [ u , v ] [u,v] [u,v]任意的两个不同线的向量 u ~ \tilde u u~ v ~ \tilde v v~,表达式满足满秩线性变换
[ u ~ v ~ ] = [ a 1 1 a 1 2 a 2 1 a 2 2 ] ⋅ [ u v ] \begin{bmatrix} \tilde u \\ \tilde v\\\end{bmatrix}= \begin{bmatrix}a_1^1 &a_1^2 \\a_2^1 & a_2^2 \\ \end{bmatrix} \cdot \begin{bmatrix} u \\v\\\end{bmatrix} [u~v~]=[a11a21a12a22][uv]
d e t ( a i j ) ≠ 0 det(a_i^j)\neq 0 det(aij)̸=0

这样 ∣ ∣ ( u ~ ∧ v ~ ) ∣ ∣ 2 = ( d e t ( a i j ) ) 2 × ∣ ∣ ( u ∧ v ) ∣ ∣ 2 \mid \mid(\tilde u \wedge \tilde v)\mid \mid ^{2}=(det(a_i^j))^2 \times \mid \mid(u \wedge v)\mid \mid ^{2} (u~v~)2=(det(aij))2×(uv)2
另一方面 根据黎曼曲率张量的对称性和反对称性有:
R ( u ~ , v ~ , u ~ , v ~ ) = ( d e t ( a i j ) ) 2 × R ( u , v , u , v ) R(\tilde u,\tilde v,\tilde u,\tilde v)=(det(a_i^j))^2 \times R(u, v, u, v) R(u~,v~,u~,v~)=(det(aij))2×R(u,v,u,v)

从上两式可以看出
K ( u , v ) = R ( u ~ , v ~ , u ~ , v ~ ) ∣ ∣ ( u ~ ∧ v ~ ) ∣ ∣ 2 = R ( u , v , u , v ) ∣ ∣ ( u ∧ v ) ∣ ∣ 2 \color{blue}K(u,v)=\frac {R(\tilde u,\tilde v,\tilde u,\tilde v)}{\mid \mid(\tilde u \wedge \tilde v)\mid \mid ^{2}}=\frac {R(u, v, u, v)}{ \mid \mid(u \wedge v)\mid \mid ^{2}} K(u,v)=(u~v~)2R(u~,v~,u~,v~)=(uv)2R(u,v,u,v)
定义这个不变量为黎曼流形M在 p p p点沿着二维截面 [ u , v ] [u,v] [u,v]的截面曲率。这个曲率也就是M中与二维截面相切的曲面S在 p p p点的Gauss曲率。
考虑曲面上的封闭曲线,曲线上的切向量 v ⃗ \vec v v 沿着封闭曲线走一圈做平行移动回到出发点后得到切向量 v ⃗ ′ \vec v' v ,此时 v ⃗ ′ \vec v' v 和初始的 v ⃗ \vec v v 可能存在差异,这个差异等于封闭曲线围成的曲面区域上高斯曲率的积分。可以表示为: d ω 12 = − K ω 1 ∧ ω 2 d\omega_{12}=-K\omega_1\wedge\omega_2 dω12=Kω1ω2。即联络的外微分等于曲面的 G a u s s Gauss Gauss曲率。从关系上看 R i e m m a n Riemman Riemman度量 ⟶ \longrightarrow 活动标架 ⟶ \longrightarrow 联络 ⟶ \longrightarrow 曲率。
假设曲面M上的 R i e m m a n Riemman Riemman度量为: g = e 2 λ ( u , v ) ( d u 2 + d v 2 ) g=e^{2\lambda(u,v)}(du^2+dv^2) g=e2λ(u,v)(du2+dv2)不难看出弧长参数 d s 2 = w 1 2 + w 2 2 ds^2=w_1^2+w_2^2 ds2=w12+w22,其中 w 1 = e λ d u , w 2 = e λ d v w_1=e^\lambda du, w_2=e^\lambda dv w1=eλdu,w2=eλdv。将 g g g 进行变换,假设变换后为 g ~ = e 2 μ g \tilde g=e^{2\mu}g g~=e2μg

K = − 1 e 2 λ △ λ \color{red}K=-\frac{1}{e^{2\lambda}}\triangle \lambda K=e2λ1λ
K ~ = − 1 e 2 ( λ + μ ) △ ( λ + μ ) \color{red}\widetilde K=-\frac{1}{e^{2(\lambda+\mu)}}\triangle(\lambda+\mu) K =e2(λ+μ)1(λ+μ)

从上式可得:

K ~ = e − 2 μ ( − e − 2 λ ( △ λ + △ μ ) ) \widetilde K =e^{-2\mu}(-e^{-2\lambda}(\triangle\lambda+\triangle\mu)) K =e2μ(e2λ(λ+μ))
= e − 2 μ ( K + ( − e − 2 λ △ μ ) ) =e^{-2\mu}(K+(-e^{-2\lambda}\triangle\mu)) =e2μ(K+(e2λμ))
= e − 2 μ ( K − △ g μ ) =e^{-2\mu}(K-\triangle_g\mu) \quad \quad\quad =e2μ(Kgμ)
= e − 2 μ K − △ g ~ μ =e^{-2\mu}K-\triangle_{\widetilde g} \mu \quad\quad \quad\quad =e2μKg μ
上述方程被称为Yamabe方程

单值化定理
单值化定理断言给定一个连通的无边曲面 S ,具有黎曼度量 g ,则存在函数$ λ:S→R , 使 得 度 量 ,使得度量 使 e^{2λ}g$ 和初始度量 g g g共形等价,并且 e 2 λ g e^{2λ}g e2λg 所决定的高斯曲率为常数。如果曲面的欧拉示性数$ χ(S)$ 为正,零或负,则高斯曲率为+1,0,-1。对应于球面,平面,双曲面。

##Hamilton Ricci flow##
d g i j d t = 2 ( π χ ( S ) A ( 0 ) − K ) g i j \frac{dg_{ij}}{dt}=2\left(\frac{\pi\chi(S)}{A(0)}-K\right)g_{ij} dtdgij=2(A(0)πχ(S)K)gij
其中 A ( 0 ) A(0) A(0)是曲面的初始总面积,如果用曲率表示Ricci flow, d g i j d t = − 2 K g i j \frac{dg_{ij}}{dt}=-2Kg_{ij} dtdgij=2Kgij对应的曲率常微分方程为:…待续

  • 2
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值