矫正倾斜pcd点云

在之前的orb-slam2稠密点云工作中,得到的点云生成八叉树是倾斜的,导致在生成pgm地图或者八叉树路径规划都不是特别合适,最近刚好想起了这件事,所幸解决了问题。

这是之前得到的八叉树:这个地面大概倾斜了45度,只在rviz下修改网格的平面并不能解决问题,还是得从点云坐标下手。

我这里是用了 Meshlab这款软件,打开终端输入下面指令下载安装:

sudo apt-get install meshlab

安装成功后终端输入meshlab 就可以打开软件,出现下面界面就是下载成功。

meshlab支持修改的格式有ply,所以还需要将之前得到的pcd文件转换为ply格式,这里需要做一个格式转换。

利用已经安装好的pcl库将.pcd转换为.ply:

pcl_pcd2ply XXX.pcd XXX.ply

 双击生成的.ply文件,可以直接在meshlab中打开,如下图

 

选择Filters->Normals,Curvatures and Orientation ->Transform:Rotate,会弹出下面窗口,选择Y axis(Y轴),origin。Rotation Angle是调整角度,这里要根据自己的点云来修改,可以先给一个负角度-20,点击Apply,然后看看点云转动的角度,慢慢将倾斜的点云调整过来,X axis(X轴也是一样的方法)

修改好了后,点击file,Save Project As,保存修改后的ply文件,然后需要将修改后的ply文件转换为pcd文件

.ply转换为.pcd:

git clone https://github.com/qixuxiang/ply2pcd.git

 复制下来后文件如下:

修改main.c,第17行的路径改为自己的ply文件保存路径,第18行的路径改为自己的pcd文件路径。

修改CMakeLists.txt中的pcl版本,我之前一直用的都是pcl1.1,我这里第5行写的就是1.1,如果不知道自己pcl的版本,输入  dpkg -l | grep libpcl  查询

 

 然后开始编译:

cd ply2pcd
mkdir build && cd build
cmake ..
make

运行可执行程序,可以在指定路径下得到一个pcd文件

cd ply2pcd/build
./ply2pcd

然后还是用之前的方法,我前面的博客有写,用这个修改后的pcd文件生成八叉树,这里就直接展示结果了,看着还不错吧(¬_¬)

 

<think>好的,我现在需要回答用户关于如何将稠密PCD点云文件转换为栅格地图的问题。用户提到了ROS环境,并且引用了三个相关的引用内容,我需要结合这些信息来给出详细的步骤和建议。 首先,用户的需求是将三维点云转换为二维栅格地图,这在机器人导航中很常见。根据引用[2],这个过程通常包括点云预处理、投影到二维平面、生成栅格地图和保存为PGM格式。我需要详细解释每个步骤。 第一步是点云预处理。用户需要过滤掉无关的数据,比如高空点云或噪声。这里可能需要使用统计滤波或体素格滤波,这些在PCL库中都有现成的方法。例如,使用pcl::StatisticalOutlierRemoval来去除离群点。 接下来是三维到二维的投影。通常是将点云投影到XY平面,但需要考虑Z轴的范围,可能需要截取特定高度范围内的点,比如地面以上0.2米到1米,以保留可行走区域。这里需要提醒用户根据实际场景调整参数。 然后是栅格地图的生成。每个栅格的分辨率(如0.05米/像素)需要确定,并计算点云在XY平面的分布范围,从而确定栅格地图的尺寸。接着统计每个栅格内的点云密度或是否有障碍物,设置阈值来判断该栅格是否被占据。比如,密度超过某个值的栅格标记为障碍物。 保存为PGM格式时,需要将栅格数据转换为图像格式,其中障碍物用黑色(0),空闲区域用白色(255)。同时生成对应的YAML文件描述地图的元数据,如分辨率和原点坐标。 用户可能需要使用ROS中的工具,比如pcl_ros包来读取和发布点云数据。根据引用[1],需要编写代码定期发布点云话题,以便后续的octomap处理。另外,引用[3]提到使用Hybrid A*算法进行路径规划,这可能需要栅格地图的特定格式,因此在保存时要注意兼容性。 关于工具,除了手动编写代码,可以推荐使用ROS的gmapping或octomap,但用户的需求是二维栅格,所以可能需要自定义处理。如果用户想用现有工具,可以提及CloudCompare进行预处理,再用ROS节点转换。 需要注意的问题包括坐标系的统一,点云数据的频率,以及如何处理动态障碍物。此外,提醒用户在实际应用中可能需要调整参数,比如栅格分辨率和障碍物阈值,以适应不同的环境和传感器数据。 最后,生成相关问题需要考虑用户可能遇到的后续步骤,比如路径规划、实时处理或三维栅格的应用,以及性能优化的问题。这些问题可以帮助用户进一步深入学习和解决问题。</think>### 将稠密点云PCD文件转换为栅格地图的方法 #### 核心步骤 1. **点云数据加载与预处理** - 使用ROS的`pcl_ros`包读取PCD文件,并通过话题发布点云数据(如`sensor_msgs/PointCloud2`)[^1]。 - **滤波处理**:移除离群点和噪声。例如,使用`StatisticalOutlierRemoval`滤波器消除孤立点。 - **高度截取**:根据场景需求(如地面机器人导航),仅保留特定高度范围内的点云(例如Z轴在$[0.2, 1.0]$米内)[^2]。 2. **三维到二维投影** - 将点云投影到XY平面,忽略Z轴信息。若需保留高度信息(如无人机避障),可生成多层栅格地图。 - 公式化描述投影范围: $$ x \in [x_{\text{min}}, x_{\text{max}}], \quad y \in [y_{\text{min}}, y_{\text{max}}] $$ 3. **栅格地图生成** - **分辨率设置**:定义栅格大小(如$0.05$米/像素)。 - **栅格赋值**: - 统计每个栅格内的点云密度。 - 设定阈值判断障碍物(如密度$\geq 3$则标记为占据状态)。 - 输出为二维矩阵,保存为PGM格式(占用栅格为黑色,空闲区域为白色)[^3]。 4. **地图后处理** - **膨胀处理**:对障碍物边缘进行膨胀,避免路径规划时紧贴障碍物。 - **坐标对齐**:确保栅格地图的原点与ROS的`map`坐标系一致。 #### 代码工具与示例 ```python # 示例:点云投影与栅格化(伪代码) import numpy as np from sklearn.neighbors import KDTree def pcd_to_grid(pcd_path, resolution=0.05): # 读取PCD文件并滤波 points = load_pcd(pcd_path) filtered_points = statistical_filter(points) # 计算投影范围 x_min, x_max = np.min(points[:,0]), np.max(points[:,0]) y_min, y_max = np.min(points[:,1]), np.max(points[:,1]) # 初始化栅格 grid_width = int((x_max - x_min) / resolution) grid_height = int((y_max - y_min) / resolution) grid = np.zeros((grid_height, grid_width), dtype=np.uint8) # 填充栅格 kd_tree = KDTree(filtered_points[:,:2]) for i in range(grid_height): for j in range(grid_width): x = x_min + j * resolution y = y_min + i * resolution indices = kd_tree.query_radius([[x, y]], r=resolution/2) if len(indices[0]) > 3: # 密度阈值 grid[i,j] = 255 # 障碍物 # 保存为PGM save_pgm(grid, "output_map.pgm") ``` #### 工具推荐 - **ROS工具链**: - `pcl_ros`用于点云读取与发布[^1]。 - `octomap_server`可间接生成二维栅格(需配置参数`project2D=true`)。 - **第三方工具**: - CloudCompare:可视化点云并手动裁剪区域。 - MATLAB/Octave:自定义栅格化脚本。 #### 注意事项 - **坐标系对齐**:确保点云数据的坐标系(如`odom`或`map`)与ROS系统一致。 - **实时性要求**:若需动态更新栅格地图,建议以$1-5$Hz频率发布点云数据。 - **动态障碍物**:若场景含移动物体,需结合时间戳过滤历史点云。 ---
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值