【RAG 博客】Small-to-Big Retrieval

Blog:Advanced RAG 01: Small-to-Big Retrieval
⭐⭐⭐⭐
Code:https://colab.research.google.com/github/sophiamyang/demos/blob/main/advanced_rag_small_to_big.ipynb

Small-to-Big Retrieval 技术试图解决这样一个矛盾:更大的 chunk 可以包含更多有用的信息,但其包含的较多无用文本又会掩盖 semantic representation 从而导致检索效果的变差。

这篇 blog 提出的思路是:基于更小、更有针对性的 text chunk 进行 embedding 和 retrieval,但仍然使用较大的 text chunk 来为 LLM 提供更多的上下文信息。也就是在检索过程中使用较小的 text chunk,然后将检索到的文本的对应的更大的 text chunk 给 LLM。

其具体实现思路有两种:

  1. 较小的 child chunk 指向更大的一个 parent chunk:在检索时先获取到较小的 child chunk,然后返回较大的 parent chunk。
  2. Sentence Window Retrieval:在检索过程中仅获取一个句子,并返回这个句子周围的一段文本。

之后,blog 使用了 LlamaIndex 来实现了这两种方法,具体可以参考原 blog。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值