上下文感知的体素对比学习用于标签高效的多器官分割

Context-Aware Voxel-Wise Contrastive Learning for Label Efficient Multi-organ Segmentation

摘要

医学图像分割是许多临床应用的先决条件,包括疾病诊断、手术计划和计算机辅助干预。由于在获得专家级准确、注释密集的多器官数据集方面存在挑战,现有的多器官分割数据集要么样本数量较少,要么只对少数器官而不是所有器官进行注释,这些数据被称为部分标记数据。以前有人试图开发标签有效的分割方法,利用这些部分标记的数据集来提高多器官分割的性能。然而,这些方法中的大多数都受到限制,即它们只使用数据集中的标记信息,而没有利用大量未标记的数据。为此,我们提出了一种上下文感知的体素对比学习方法,以充分利用部分标记数据集中的标记和未标记数据,提高多器官分割性能。

本文方法

在这里插入图片描述
(a) 部分标记的数据和标签
(b) 从部分标记的数据中采样的3Dpatch和标签
(c) 体素对比学习
(d)标记和未标记部分的预测
图1显示了总体架构。从该图中可以看出,有两个分支,即一个用于标记的体素,另一个用于未标记的体素。对于标记的体素,我们计算交叉熵(CE)损失和dice损失。对于未标记的部分,我们计算上下文感知的体素对比学习损失。

有监督损失

在这里插入图片描述

Context-Aware Contrastive Learning Loss for Unlabeled Voxels

基于patch/子体积的策略来训练网络时,由于上下文信息的差异,当体素位于不同的补丁中时,体素的预测可能不同。使用上下文感知的对比学习来最大限度地减少这种不一致性,从而使我们能够利用部分标记数据集中的大量未标记数据
在每次训练迭代中,在我们将两个重叠的3D补丁送到我们的网络以获得预测之后,我们将重叠区域中的未标记体素的预测pki分组为一个集合,然后下采样,对于属于同一个体素,我们希望相应的特征接近

为此,我们设计了一个方向对比度损失(DC损失)来训练我们的网络,以便对齐从不同patch预测中获得的相同体素的特征。
还要求对齐特征的置信度应大于某个阈值,以确保对齐特征的质量。
DC Loss如下:
在这里插入图片描述
需要仔细结合图和公式体会

实验结果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小杨小杨1

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值