图论特殊结论(一)

偶图

(1) 一个图是偶图当且当它不包含奇圈.

(2) n n n 阶完全偶图 K n 1 , n 2 K_{n_1,n_2} Kn1,n2 的边数 m = n 1 n 2 m=n_1n_2 m=n1n2 ,且 m ≤ ⌊ n 2 / 4 ⌋ m\leq\lfloor n^2/4\rfloor mn2/4

(3) 设 G 为具有二分类 (X, Y ) 的偶图,则 G 包含饱和 X 的每个顶点的匹配当且仅当 ∣ N ( S ) ∣ ≥ ∣ S ∣ |N(S)| ≥ |S| N(S)S,对所有 S ⊆ X S ⊆ X SX 成立.

(4) 若 G 是 k 正则偶图 (k > 0),则 G 有完美匹配.

(5) 在偶图中,最大匹配中的边数等于最小覆盖中的点数.

(6) k 正则偶图 (k > 0) 是 1-可因子化的.

(7) 设 l 是赋权完全偶图 G = (X, Y ) 的可行顶点标号,若相等子图 G l G_l Gl 有完美匹配 M ∗ M^∗ M,则 M ∗ M^∗ M 是 G 的最优匹配.

(8) 偶图的边色数 χ ′ = ∆ χ^′ = ∆ χ=.

(9) 偶图及其补图均为完美图.

(10) k k k 正则二部图 (k ≥ 2) 无割边.

(11) 图 K m , n ( m ≤ n ) K_{m,n}(m ≤ n) Km,n(mn) 的最小覆盖包含的点数为 m m m.

彼得森图

(1) 彼得森图不是 H 图.

(2) 彼得森图有完美匹配.

(3) 彼得森图不可 1-因子分解

(4) 彼得森图是不可平面图.

(5) 彼得森图的边色数为 4,点色数为 3.

(6) 彼得森图的点连通度和边连通度分别为 3 和 3

(7) 彼得森图不是偶图,因为含有奇圈

有割边的 3 正则图不一定就没有完美匹配.

奇数阶图不能有 1-因子.

1-可因子分解的 3 正则图不一定有 Hamilton 圈.

若 3 正则图有割边,则不可 1-因子分解

无割边的 3 正则图可能也没有 1-因子分解

图的基本概念

  1. 3 个顶点的非同构的所有简单图有 4 个,4 个顶点的非同构的所有简单图有 11 个.
  2. 具有 m m m 条边的 n n n 阶简单偶图,则 m ≤ ⌊ n 2 / 4 ⌋ m ≤ ⌊n^2/4⌋ mn2/4.
  3. K l + 1 ⊈ G K_{l+1}\nsubseteq G Kl+1G, 则 m ( T l , n ) = C l 2 ( n l ) 2 m(T_{l,n})=C_l^2\left(\frac nl\right)^2 m(Tl,n)=Cl2(ln)2.

  1. 非同构的 4 阶、5 阶、6 阶树的个数分别为 2、3、6.
  2. k k k 颗树组成的森林满足 m = n − k m = n − k m=nk
  3. τ ( K n ) = n n − 2 , τ ( k m , n ) = n m − 1 m n − 1 . K 5 = 125 , K 3 , 3 = 81 \tau\left(K_n\right)=n^{n-2},\tau(k_{m,n})=n^{m-1}m^{n-1}.K_5=125,K_{3,3}=81 τ(Kn)=nn2,τ(km,n)=nm1mn1.K5=125,K3,3=81.
  4. 二元完全树 (m = 2),则分支点数为 i = t−1,边数之和为 m(T) =
    2(t − 1)

图的连通度

  1. 阶数 ≥ 3 的无环连通图,有割边 ⇒ 有割点.
  2. (n ≥ 3) 块没有割边,块有圈.
  3. ( 1 ) κ ( K n ) = n − 1 , ( 2 ) κ ( C n ) = 2 (1) κ(Kn) = n − 1, (2) κ(Cn) = 2 (1)κ(Kn)=n1,(2)κ(Cn)=2 其中 C n C_n Cn n n n 圈, n ≥ 3 n ≥ 3 n3.
  4. ( 1 ) λ ( K n ) = n − 1 , ( 2 ) λ ( C n ) = 2 (1)λ (Kn) = n − 1,(2)λ (Cn) = 2 (1)λ(Kn)=n1,(2)λ(Cn)=2 其中 C n C_n Cn n n n 圈, n ≥ 2 n ≥ 2 n2.
  5. k k k 连通一定是 k k k 边连通的.
  6. G G G 的顶点数为 n n n 7 7 7 连通,则其边数至少为 ⌈ 7 n / 2 ⌉ ⌈7n/2⌉ 7n/2 (因为根据 κ ( G ) ≤ λ ( G ) ≤ δ ( G ) κ(G) ≤ λ(G) ≤ δ(G) κ(G)λ(G)δ(G), 7 7 7 连通,有 7 ≤ κ ( G ) ≤ λ ( G ) ≤ δ ( G ) 7 ≤ κ(G) ≤ λ(G) ≤ δ(G) 7κ(G)λ(G)δ(G),因此 7 ≤ δ ( G ) 7 ≤ δ(G) 7δ(G),根据握手定理, 2 m ≥ 7 n 2m ≥ 7n 2m7n
  7. 图 G 连通度为 k,则不一定存在 k 点割
  8. 图 G 边连通度为 k,则一定存在 k 边割

Euler 图与 H 图

  1. Euler 图没有割边,有可能有割点
  2. K m , n K_{m,n} Km,n(m, n 均为偶数),则欧拉环游中至少包含 m n mn mn 条边.
  3. 一必要 ( ω ( G − S ) ≤ ∣ S ∣ ) (\omega(G-S)\leq|S|) (ω(GS)S), 三充分 ( δ ( G ) ≥ n 2 , d ( u ) + d ( v ) ≥ n (\delta(G)\geq\frac n2,d(u)+d(v)\geq n (δ(G)2n,d(u)+d(v)n, 闭包是完全图), 一充要(闭包是 H 图).
  4. 若对任意的 m < n / 2 m<n/2 m<n/2, 或有 d m > m d_m>m dm>m ,或有 d n − m ≥ n − m d_{n -m}\geq n-m dnmnm,则 G G G 是 H 图.
  5. n n n 阶完全图中 H H H 圈的个数为 ( n − 1 ) / 2 (n-1)/2 (n1)/2
  6. 两个欧拉图的积图也是欧拉图。

匹配与因子分解

  1. K 2 n K_{2n} K2n K n , n K_{n,n} Kn,n 中不同的完美匹配的个数(或不同的 1 因子数目)分别是 ( 2 n − 1 ) ! ! (2n − 1)!! (2n1)!! n ! n! n!.
  2. 每个没有割边的 3 正则图都有完美匹配.
  3. 有割边的 3 正则图不一定就没有完美匹配.
  4. 彼得森图有完美匹配,3 正则哈密尔顿图存在完美匹配.
  5. 奇数阶图不能有 1-因子.(1 因子是存在完美匹配的,必须偶数阶才能两两配对)
  6. 具有 Hamilton 圈的 3 正则图是 1-可因子化的.
  7. 1-可因子分解的 3 正则图不一定有 Hamilton 圈
  8. 若 3 正则图有割边,则不可 1-因子分解.(但是可能存在一因子,因为可能存在完美匹配)
  9. 无割边的 3 正则图可能也没有 1-因子分解.(还需要有 H 圈)
  10. K 2 n K_{2n} K2n 的不同的 1-因子数目有 ( 2 n − 1 ) ! ! (2n − 1)!! (2n1)!!
  11. 一个连通图是 2-可因子化的当且仅当它是偶数度正则图

平面图

  1. 极大平面图:三角形特征(外平面也是三角形)
  2. 极大平面图满足: ( a ) m = 3 n – 6 (a) m = 3n–6 (a)m=3n–6 ( b ) φ = 2 n – 4. (b) φ = 2n–4. (b)φ=2n–4.
  3. 极大外平面图当且仅当其外部面的边界是圈,内部面是三角形.
  4. 极大外平面图有 n–2 个内部面.
  5. G ∗ G^∗ G 的面数 = G G G 的点数 (G 连通);
  6. 同构的平面图可以有不同构的对偶图.

图的着色

  1. χ ′ ( K m , n ) = Δ \chi^{\prime}\left(K_{m,n}\right)=\Delta χ(Km,n)=Δ ,偶图的边色数 χ ′ = Δ \chi^{\prime}=\Delta χ=Δ.
  2. n n n 阶简单图 G G G , 若 n = 2 k + 1 n=2k+1 n=2k+1 且边数 m > k Δ m>k\Delta m>kΔ , 则 χ ′ = Δ + 1 \chi^{\prime}=\Delta+1 χ=Δ+1.
  3. G G G 是奇阶 Δ \Delta Δ 正则简单图,则 χ ′ = Δ + 1 \chi^{\prime}=\Delta+1 χ=Δ+1.
  4. n n n 为 奇 数 , χ ′ ( K n ) = ( n − 1 ) + 1 = n , χ ′ ( C n ) = 2 + 1 = 3 \chi ^{\prime }( K_{n}) = ( n- 1) + 1= n, \chi ^{\prime }( C_{n}) = 2+ 1= 3 χ(Kn)=(n1)+1=n,χ(Cn)=2+1=3
  5. n n n为偶数, χ ′ ( K n ) = n − 1 , χ ′ ( C n ) = 2 \chi^\prime\left(K_{n}\right)=n-1,\chi^{\prime}\left(C_{n}\right)=2 χ(Kn)=n1,χ(Cn)=2
  6. 完全图和奇圈的 χ = Δ + 1. \chi=\Delta+1. χ=Δ+1.
  7. 彼得森图的点色数为 3,边色数是 4.(彼得森图是一个 包含了 10 个顶点的 3 正则图,包含一个 K 3 K_3 K3
  8. G 是具有 n 个点的树,则 P k ( G ) = k ( k − 1 ) n − 1 P_k(G) = k(k − 1)n−1 Pk(G)=k(k1)n1
  9. 同构的图有相同的色多项式,但其逆不真.

容易犯错的

  1. 阶数至少为 3 的极大外平面图一定是哈密尔顿图 (对).

  2. G 的点数等于 G∗ 的面数 (错),当 G 连通时才成立.

  3. G ∗ ≅ ( G ∗ ) ∗ G^∗ \cong (G^∗)^∗ G(G) (错),当 G 连通时才成立.

  4. G 1 ≅ G 2 G_1 \cong G_2 G1G2, 则 G 1 ∗ ≅ G 2 ∗ G^∗_1 \cong G^∗_2 G1G2 (错),同构的图可以有不同构的对偶图.

  5. 超立方体 Q k Q_k Qk 的点色数和边色数分别为 2 和 k.

  6. 已知树 T 的阶数为 n,则其多项式为 k ( k − 1 ) n − 1 k(k − 1)^{n−1} k(k1)n1.

  7. 高度为 h 的完全二元树至少有 h + 1 片叶子.

  8. 在有向图中,顶点的出度之和等于入度之和等于边数;在有向图的邻接矩阵中,所有元素之和等于边数.在无环的有向图的关联矩阵中,各列元素之和均等于 0

  9. 有向强连通图中顶点间的强连通关系是等价关系,而单向连通不是等价关系;有向图 D 中任意一顶点只能处于 D 的某一个强连通分支中,有向图 D 中顶点 v 可能处于 D 的不同的单向连通分支中.

一些往年考题

  1. 具有 5 个结点的自补图的个数有 2 个.

  2. 若 n 阶单图 G 的最大度是 ∆ ,则其补图的最小度 δ ( G ‾ ) = n − 1 − Δ \delta(\overline{G})={n-1-\Delta} δ(G)=n1Δ

  3. 若 n 阶单图 G 的最小度是 δ ,则其补图的最大度 ∆ ( G ‾ ) = n − 1 − δ ∆(\overline{G}) = n − 1 − δ (G)=n1δ

  4. n 方体的点色数为 2,边色数为 n.

  5. G = K n , n G = K_{n,n} G=Kn,n,则其最大特征值为 n.

  6. 由 3 个连通分支 K 1 , K 2 , K 4 K_1, K_2, K_4 K1,K2,K4 组成的平面图,则其共有 4 4 4 个面.(利用欧拉公式计算即可: 7 - 7 + ϕ \phi ϕ = 3 + 1)

  7. 设图 G 与 K 5 K_5 K5 同胚,则至少从 G 中删掉 1 条边,才可能使其成为可平面图.( K 5 K_5 K5 K 3 , 3 K_{3, 3} K3,3 都是极小非平面的图)

  8. 平面图与对偶图不同构

有向图 D 中任意一顶点 v 只能处于 D 的某一个强连通分支中;

有向图 D 中顶点 v 可能处于 D 的不同的单向分支中;

强连通图中的所有顶点必然处于强连通图的某一有向回路中;

有向连通图中顶点间的强连通关系是等价关系,但是单向连通关系是不等价的关系.

连通 3 正则图必存在完美匹配(错的);(连通 3 正则偶图必存在完美匹配;没有割边的三正则图必然存在完美匹配,3 正则偶图没有割边, 存在完美匹配,即1-因子,从不断减去完美匹配的方式就可得到正则偶图的1-因子分解。)

存在完美匹配的圈是偶图;(因为是一个偶圈)

不含三角形的图都是偶图.(错的)5 个顶点的圈

完全图一定没有割边;( 错) K 2 K_2 K2

证明题

在这里插入图片描述


在这里插入图片描述在这里插入图片描述


在这里插入图片描述


在这里插入图片描述


匹配问题

在这里插入图片描述


H 圈问题

在这里插入图片描述


边着色问题

在这里插入图片描述在这里插入图片描述


在这里插入图片描述


点着色问题

在这里插入图片描述


在这里插入图片描述在这里插入图片描述


在这里插入图片描述

欧拉环游,H 圈问题

在这里插入图片描述


在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值