偶图
(1) 一个图是偶图当且当它不包含奇圈.
(2) n n n 阶完全偶图 K n 1 , n 2 K_{n_1,n_2} Kn1,n2 的边数 m = n 1 n 2 m=n_1n_2 m=n1n2 ,且 m ≤ ⌊ n 2 / 4 ⌋ m\leq\lfloor n^2/4\rfloor m≤⌊n2/4⌋
(3) 设 G 为具有二分类 (X, Y ) 的偶图,则 G 包含饱和 X 的每个顶点的匹配当且仅当 ∣ N ( S ) ∣ ≥ ∣ S ∣ |N(S)| ≥ |S| ∣N(S)∣≥∣S∣,对所有 S ⊆ X S ⊆ X S⊆X 成立.
(4) 若 G 是 k 正则偶图 (k > 0),则 G 有完美匹配.
(5) 在偶图中,最大匹配中的边数等于最小覆盖中的点数.
(6) k 正则偶图 (k > 0) 是 1-可因子化的.
(7) 设 l 是赋权完全偶图 G = (X, Y ) 的可行顶点标号,若相等子图 G l G_l Gl 有完美匹配 M ∗ M^∗ M∗,则 M ∗ M^∗ M∗ 是 G 的最优匹配.
(8) 偶图的边色数 χ ′ = ∆ χ^′ = ∆ χ′=∆.
(9) 偶图及其补图均为完美图.
(10) k k k 正则二部图 (k ≥ 2) 无割边.
(11) 图 K m , n ( m ≤ n ) K_{m,n}(m ≤ n) Km,n(m≤n) 的最小覆盖包含的点数为 m m m.
彼得森图
(1) 彼得森图不是 H 图.
(2) 彼得森图有完美匹配.
(3) 彼得森图不可 1-因子分解
(4) 彼得森图是不可平面图.
(5) 彼得森图的边色数为 4,点色数为 3.
(6) 彼得森图的点连通度和边连通度分别为 3 和 3
(7) 彼得森图不是偶图,因为含有奇圈
有割边的 3 正则图不一定就没有完美匹配.
奇数阶图不能有 1-因子.
1-可因子分解的 3 正则图不一定有 Hamilton 圈.
若 3 正则图有割边,则不可 1-因子分解
无割边的 3 正则图可能也没有 1-因子分解
图的基本概念
- 3 个顶点的非同构的所有简单图有 4 个,4 个顶点的非同构的所有简单图有 11 个.
- 具有 m m m 条边的 n n n 阶简单偶图,则 m ≤ ⌊ n 2 / 4 ⌋ m ≤ ⌊n^2/4⌋ m≤⌊n2/4⌋.
- K l + 1 ⊈ G K_{l+1}\nsubseteq G Kl+1⊈G, 则 m ( T l , n ) = C l 2 ( n l ) 2 m(T_{l,n})=C_l^2\left(\frac nl\right)^2 m(Tl,n)=Cl2(ln)2.
树
- 非同构的 4 阶、5 阶、6 阶树的个数分别为 2、3、6.
- 由 k k k 颗树组成的森林满足 m = n − k m = n − k m=n−k.
- τ ( K n ) = n n − 2 , τ ( k m , n ) = n m − 1 m n − 1 . K 5 = 125 , K 3 , 3 = 81 \tau\left(K_n\right)=n^{n-2},\tau(k_{m,n})=n^{m-1}m^{n-1}.K_5=125,K_{3,3}=81 τ(Kn)=nn−2,τ(km,n)=nm−1mn−1.K5=125,K3,3=81.
- 二元完全树 (m = 2),则分支点数为 i = t−1,边数之和为 m(T) =
2(t − 1)
图的连通度
- 阶数 ≥ 3 的无环连通图,有割边 ⇒ 有割点.
- (n ≥ 3) 块没有割边,块有圈.
- ( 1 ) κ ( K n ) = n − 1 , ( 2 ) κ ( C n ) = 2 (1) κ(Kn) = n − 1, (2) κ(Cn) = 2 (1)κ(Kn)=n−1,(2)κ(Cn)=2 其中 C n C_n Cn 为 n n n 圈, n ≥ 3 n ≥ 3 n≥3.
- ( 1 ) λ ( K n ) = n − 1 , ( 2 ) λ ( C n ) = 2 (1)λ (Kn) = n − 1,(2)λ (Cn) = 2 (1)λ(Kn)=n−1,(2)λ(Cn)=2 其中 C n C_n Cn 为 n n n 圈, n ≥ 2 n ≥ 2 n≥2.
- k k k 连通一定是 k k k 边连通的.
- 图 G G G 的顶点数为 n n n 且 7 7 7 连通,则其边数至少为 ⌈ 7 n / 2 ⌉ ⌈7n/2⌉ ⌈7n/2⌉ (因为根据 κ ( G ) ≤ λ ( G ) ≤ δ ( G ) κ(G) ≤ λ(G) ≤ δ(G) κ(G)≤λ(G)≤δ(G), 7 7 7 连通,有 7 ≤ κ ( G ) ≤ λ ( G ) ≤ δ ( G ) 7 ≤ κ(G) ≤ λ(G) ≤ δ(G) 7≤κ(G)≤λ(G)≤δ(G),因此 7 ≤ δ ( G ) 7 ≤ δ(G) 7≤δ(G),根据握手定理, 2 m ≥ 7 n 2m ≥ 7n 2m≥7n)
- 图 G 连通度为 k,则不一定存在 k 点割
- 图 G 边连通度为 k,则一定存在 k 边割
Euler 图与 H 图
- Euler 图没有割边,有可能有割点
- K m , n K_{m,n} Km,n(m, n 均为偶数),则欧拉环游中至少包含 m n mn mn 条边.
- 一必要 ( ω ( G − S ) ≤ ∣ S ∣ ) (\omega(G-S)\leq|S|) (ω(G−S)≤∣S∣), 三充分 ( δ ( G ) ≥ n 2 , d ( u ) + d ( v ) ≥ n (\delta(G)\geq\frac n2,d(u)+d(v)\geq n (δ(G)≥2n,d(u)+d(v)≥n, 闭包是完全图), 一充要(闭包是 H 图).
- 若对任意的 m < n / 2 m<n/2 m<n/2, 或有 d m > m d_m>m dm>m ,或有 d n − m ≥ n − m d_{n -m}\geq n-m dn−m≥n−m,则 G G G 是 H 图.
- n n n 阶完全图中 H H H 圈的个数为 ( n − 1 ) / 2 (n-1)/2 (n−1)/2.
- 两个欧拉图的积图也是欧拉图。
匹配与因子分解
- K 2 n K_{2n} K2n 和 K n , n K_{n,n} Kn,n 中不同的完美匹配的个数(或不同的 1 因子数目)分别是 ( 2 n − 1 ) ! ! (2n − 1)!! (2n−1)!!, n ! n! n!.
- 每个没有割边的 3 正则图都有完美匹配.
- 有割边的 3 正则图不一定就没有完美匹配.
- 彼得森图有完美匹配,3 正则哈密尔顿图存在完美匹配.
- 奇数阶图不能有 1-因子.(1 因子是存在完美匹配的,必须偶数阶才能两两配对)
- 具有 Hamilton 圈的 3 正则图是 1-可因子化的.
- 1-可因子分解的 3 正则图不一定有 Hamilton 圈
- 若 3 正则图有割边,则不可 1-因子分解.(但是可能存在一因子,因为可能存在完美匹配)
- 无割边的 3 正则图可能也没有 1-因子分解.(还需要有 H 圈)
- K 2 n K_{2n} K2n 的不同的 1-因子数目有 ( 2 n − 1 ) ! ! (2n − 1)!! (2n−1)!!
- 一个连通图是 2-可因子化的当且仅当它是偶数度正则图
平面图
- 极大平面图:三角形特征(外平面也是三角形)
- 极大平面图满足: ( a ) m = 3 n – 6 (a) m = 3n–6 (a)m=3n–6; ( b ) φ = 2 n – 4. (b) φ = 2n–4. (b)φ=2n–4.
- 极大外平面图当且仅当其外部面的边界是圈,内部面是三角形.
- 极大外平面图有 n–2 个内部面.
- G ∗ G^∗ G∗ 的面数 = G G G 的点数 (G 连通);
- 同构的平面图可以有不同构的对偶图.
图的着色
- χ ′ ( K m , n ) = Δ \chi^{\prime}\left(K_{m,n}\right)=\Delta χ′(Km,n)=Δ ,偶图的边色数 χ ′ = Δ \chi^{\prime}=\Delta χ′=Δ.
- n n n 阶简单图 G G G , 若 n = 2 k + 1 n=2k+1 n=2k+1 且边数 m > k Δ m>k\Delta m>kΔ , 则 χ ′ = Δ + 1 \chi^{\prime}=\Delta+1 χ′=Δ+1.
- 设 G G G 是奇阶 Δ \Delta Δ 正则简单图,则 χ ′ = Δ + 1 \chi^{\prime}=\Delta+1 χ′=Δ+1.
- n n n 为 奇 数 , χ ′ ( K n ) = ( n − 1 ) + 1 = n , χ ′ ( C n ) = 2 + 1 = 3 \chi ^{\prime }( K_{n}) = ( n- 1) + 1= n, \chi ^{\prime }( C_{n}) = 2+ 1= 3 χ′(Kn)=(n−1)+1=n,χ′(Cn)=2+1=3
- n n n为偶数, χ ′ ( K n ) = n − 1 , χ ′ ( C n ) = 2 \chi^\prime\left(K_{n}\right)=n-1,\chi^{\prime}\left(C_{n}\right)=2 χ′(Kn)=n−1,χ′(Cn)=2
- 完全图和奇圈的 χ = Δ + 1. \chi=\Delta+1. χ=Δ+1.
- 彼得森图的点色数为 3,边色数是 4.(彼得森图是一个 包含了 10 个顶点的 3 正则图,包含一个 K 3 K_3 K3)
- G 是具有 n 个点的树,则 P k ( G ) = k ( k − 1 ) n − 1 P_k(G) = k(k − 1)n−1 Pk(G)=k(k−1)n−1.
- 同构的图有相同的色多项式,但其逆不真.
容易犯错的
-
阶数至少为 3 的极大外平面图一定是哈密尔顿图 (对).
-
G 的点数等于 G∗ 的面数 (错),当 G 连通时才成立.
-
G ∗ ≅ ( G ∗ ) ∗ G^∗ \cong (G^∗)^∗ G∗≅(G∗)∗ (错),当 G 连通时才成立.
-
若 G 1 ≅ G 2 G_1 \cong G_2 G1≅G2, 则 G 1 ∗ ≅ G 2 ∗ G^∗_1 \cong G^∗_2 G1∗≅G2∗ (错),同构的图可以有不同构的对偶图.
-
超立方体 Q k Q_k Qk 的点色数和边色数分别为 2 和 k.
-
已知树 T 的阶数为 n,则其多项式为 k ( k − 1 ) n − 1 k(k − 1)^{n−1} k(k−1)n−1.
-
高度为 h 的完全二元树至少有 h + 1 片叶子.
-
在有向图中,顶点的出度之和等于入度之和等于边数;在有向图的邻接矩阵中,所有元素之和等于边数.在无环的有向图的关联矩阵中,各列元素之和均等于 0
-
有向强连通图中顶点间的强连通关系是等价关系,而单向连通不是等价关系;有向图 D 中任意一顶点只能处于 D 的某一个强连通分支中,有向图 D 中顶点 v 可能处于 D 的不同的单向连通分支中.
一些往年考题
-
具有 5 个结点的自补图的个数有 2 个.
-
若 n 阶单图 G 的最大度是 ∆ ,则其补图的最小度 δ ( G ‾ ) = n − 1 − Δ \delta(\overline{G})={n-1-\Delta} δ(G)=n−1−Δ
-
若 n 阶单图 G 的最小度是 δ ,则其补图的最大度 ∆ ( G ‾ ) = n − 1 − δ ∆(\overline{G}) = n − 1 − δ ∆(G)=n−1−δ.
-
n 方体的点色数为 2,边色数为 n.
-
设 G = K n , n G = K_{n,n} G=Kn,n,则其最大特征值为 n.
-
由 3 个连通分支 K 1 , K 2 , K 4 K_1, K_2, K_4 K1,K2,K4 组成的平面图,则其共有 4 4 4 个面.(利用欧拉公式计算即可: 7 - 7 + ϕ \phi ϕ = 3 + 1)
-
设图 G 与 K 5 K_5 K5 同胚,则至少从 G 中删掉 1 条边,才可能使其成为可平面图.( K 5 K_5 K5 与 K 3 , 3 K_{3, 3} K3,3 都是极小非平面的图)
-
平面图与对偶图不同构
有向图 D 中任意一顶点 v 只能处于 D 的某一个强连通分支中;
有向图 D 中顶点 v 可能处于 D 的不同的单向分支中;
强连通图中的所有顶点必然处于强连通图的某一有向回路中;
有向连通图中顶点间的强连通关系是等价关系,但是单向连通关系是不等价的关系.
连通 3 正则图必存在完美匹配(错的);(连通 3 正则偶图必存在完美匹配;没有割边的三正则图必然存在完美匹配,3 正则偶图没有割边, 存在完美匹配,即1-因子,从不断减去完美匹配的方式就可得到正则偶图的1-因子分解。)
存在完美匹配的圈是偶图;(因为是一个偶圈)
不含三角形的图都是偶图.(错的)5 个顶点的圈
完全图一定没有割边;( 错) K 2 K_2 K2