1. 功函数的差异导致电子迁移
金属的功函数 ( Φ m \Phi_m Φm) 和半导体的功函数 ( Φ s \Phi_s Φs) 通常不同,功函数是将电子从材料内部提取到真空所需的最小能量。
两种情况:
-
如果 Φ m > Φ s \Phi_m > \Phi_s Φm>Φs:
- 金属的势能更高,半导体的导带较低。
- 电子会从半导体流向金属,因为半导体中的电子具有较高的能量,容易“越过”势垒。
- 导致半导体导带上移,直到半导体的费米能级与金属的费米能级达到平衡。
- 这种情况下,半导体在界面处形成了耗尽区(Depletion Region)。
-
如果 Φ m < Φ s \Phi_m < \Phi_s Φm<Φs:
- 电子会从金属流向半导体,形成积累层(Accumulation Layer)。
2. 费米能级对齐:势垒形成
金属和半导体接触时,费米能级(Fermi Level, E F E_F EF)需要达到热力学平衡,也就是两者的费米能级趋于一致。
- 半导体的导带和价带相对于费米能级的位置会发生变化。
- 如果
Φ
m
>
Φ
s
\Phi_m > \Phi_s
Φm>Φs,半导体的导带和价带被“抬高”:
- 导带靠近金属的部分高于导带远离金属的部分,形成一个上升的导带势垒(Schottky Barrier, Φ B \Phi_B ΦB)。
- 导致靠近金属的区域内,半导体的自由电子被耗尽,剩下固定的施主离子(Donor Ions)。
3. 耗尽区的形成
关键点:耗尽区是由于电子重新分布造成的。
-
半导体靠近金属的部分,自由电子流向金属。
- 自由电子减少后,留下的是固定的施主离子(正电荷)。
- 这些固定的施主离子形成了耗尽区,耗尽区的宽度用 w w w 表示。
-
金属一侧则由于电子积累形成负电荷。
- 这个负电荷会产生一个向半导体方向的电场。
- 电场的作用是阻止进一步的电子转移,达到平衡时电场强度为零。
4. 泊松方程的应用
为了量化耗尽区内的电势和电荷分布,需要使用泊松方程:
∇
2
V
(
r
)
=
−
ρ
(
r
)
ϵ
\nabla^2 V(r) = - \frac{\rho(r)}{\epsilon}
∇2V(r)=−ϵρ(r)
在肖特基接触中:
-
半导体耗尽区的电荷密度为固定的 ρ = q N D \rho = qN_D ρ=qND,即每单位体积内固定离子的电荷密度。
-
假设电势仅沿 x x x-方向变化(即平面肖特基接触),泊松方程简化为:
d 2 V ( x ) d x 2 = − q N D ϵ \frac{d^2 V(x)}{dx^2} = - \frac{qN_D}{\epsilon} dx2d2V(x)=−ϵqND -
解方程时,边界条件是:
- 在耗尽区以外( x > w x > w x>w),电场和电势趋于零。
- 在耗尽区边界( x = w x = w x=w),电势值为肖特基势垒高度 Φ B \Phi_B ΦB。
5. 肖特基势垒高度 ( Φ B \Phi_B ΦB)
肖特基势垒高度是金属-半导体接触的一个关键参数,定义为:
Φ
B
=
Φ
m
−
χ
\Phi_B = \Phi_m - \chi
ΦB=Φm−χ
其中:
- Φ m \Phi_m Φm:金属的功函数
- χ \chi χ:半导体的电子亲和能(Electron Affinity)
6. 过程总结
- 金属功函数大于半导体功函数时,电子从半导体的导带流向金属。
- 半导体中由于电子流失,形成耗尽区,留下固定的施主离子。
- 耗尽区内形成了电场,阻止更多电子流动,最终达到平衡。
- 金属和半导体的费米能级对齐,导带和价带在界面处发生弯曲,形成势垒 Φ B \Phi_B ΦB。
7. 补充理解:导带弯曲与势垒图示
可以把能带的变化画成图:
- 接触前:金属和半导体的费米能级不同,导带平直。
- 接触后:费米能级对齐,半导体导带靠近界面处上升,形成“坡状”势垒。
这样的能带图能够直观展示势垒的形成过程,以及耗尽区的概念。