肖特基接触


1. 功函数的差异导致电子迁移

金属的功函数 ( Φ m \Phi_m Φm) 和半导体的功函数 ( Φ s \Phi_s Φs) 通常不同,功函数是将电子从材料内部提取到真空所需的最小能量。

两种情况:
  1. 如果 Φ m > Φ s \Phi_m > \Phi_s Φm>Φs

    • 金属的势能更高,半导体的导带较低。
    • 电子会从半导体流向金属,因为半导体中的电子具有较高的能量,容易“越过”势垒。
    • 导致半导体导带上移,直到半导体的费米能级与金属的费米能级达到平衡。
    • 这种情况下,半导体在界面处形成了耗尽区(Depletion Region)
  2. 如果 Φ m < Φ s \Phi_m < \Phi_s Φm<Φs

    • 电子会从金属流向半导体,形成积累层(Accumulation Layer)。

2. 费米能级对齐:势垒形成

金属和半导体接触时,费米能级(Fermi Level, E F E_F EF)需要达到热力学平衡,也就是两者的费米能级趋于一致。

  • 半导体的导带和价带相对于费米能级的位置会发生变化。
  • 如果 Φ m > Φ s \Phi_m > \Phi_s Φm>Φs,半导体的导带和价带被“抬高”:
    • 导带靠近金属的部分高于导带远离金属的部分,形成一个上升的导带势垒(Schottky Barrier, Φ B \Phi_B ΦB
    • 导致靠近金属的区域内,半导体的自由电子被耗尽,剩下固定的施主离子(Donor Ions)。

3. 耗尽区的形成

关键点:耗尽区是由于电子重新分布造成的。
  1. 半导体靠近金属的部分,自由电子流向金属

    • 自由电子减少后,留下的是固定的施主离子(正电荷)。
    • 这些固定的施主离子形成了耗尽区,耗尽区的宽度用 w w w 表示。
  2. 金属一侧则由于电子积累形成负电荷。

    • 这个负电荷会产生一个向半导体方向的电场
    • 电场的作用是阻止进一步的电子转移,达到平衡时电场强度为零。

4. 泊松方程的应用

为了量化耗尽区内的电势和电荷分布,需要使用泊松方程:
∇ 2 V ( r ) = − ρ ( r ) ϵ \nabla^2 V(r) = - \frac{\rho(r)}{\epsilon} 2V(r)=ϵρ(r)

在肖特基接触中:
  1. 半导体耗尽区的电荷密度为固定的 ρ = q N D \rho = qN_D ρ=qND,即每单位体积内固定离子的电荷密度。

  2. 假设电势仅沿 x x x-方向变化(即平面肖特基接触),泊松方程简化为:
    d 2 V ( x ) d x 2 = − q N D ϵ \frac{d^2 V(x)}{dx^2} = - \frac{qN_D}{\epsilon} dx2d2V(x)=ϵqND

  3. 解方程时,边界条件是:

    • 在耗尽区以外( x > w x > w x>w),电场和电势趋于零。
    • 在耗尽区边界( x = w x = w x=w),电势值为肖特基势垒高度 Φ B \Phi_B ΦB

5. 肖特基势垒高度 ( Φ B \Phi_B ΦB)

肖特基势垒高度是金属-半导体接触的一个关键参数,定义为:
Φ B = Φ m − χ \Phi_B = \Phi_m - \chi ΦB=Φmχ
其中:

  • Φ m \Phi_m Φm:金属的功函数
  • χ \chi χ:半导体的电子亲和能(Electron Affinity)

6. 过程总结

  1. 金属功函数大于半导体功函数时,电子从半导体的导带流向金属。
  2. 半导体中由于电子流失,形成耗尽区,留下固定的施主离子。
  3. 耗尽区内形成了电场,阻止更多电子流动,最终达到平衡。
  4. 金属和半导体的费米能级对齐,导带和价带在界面处发生弯曲,形成势垒 Φ B \Phi_B ΦB

7. 补充理解:导带弯曲与势垒图示

可以把能带的变化画成图:

  • 接触前:金属和半导体的费米能级不同,导带平直。
  • 接触后:费米能级对齐,半导体导带靠近界面处上升,形成“坡状”势垒。

这样的能带图能够直观展示势垒的形成过程,以及耗尽区的概念。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值