一、引言
在现代城市交通中,红绿灯作为交通流调控的关键设施,其控制效果直接影响道路通行效率与交通拥堵状况。传统的定时控制红绿灯,依据固定时间间隔切换信号灯,未能充分考虑实时交通流量变化。在车流量差异大的时段和路段,易造成部分方向车辆长时间等待,而另一方向道路资源闲置。为解决这一问题,基于模糊逻辑控制的智能红绿灯系统应运而生,能依据实时交通信息动态调整信号灯时长,有效提升交通效率。
二、模糊逻辑控制原理
(一)模糊集合与隶属度
模糊集合是对传统集合概念的拓展,元素以一定隶属度属于某个集合,而非传统的 “属于” 或 “不属于”。例如,对于描述交通流量的模糊集合 “大流量”,不同车流量数值有不同隶属度,如每分钟 100 辆车对 “大流量” 的隶属度可能是 0.8,表明其在较大程度上属于 “大流量” 集合。隶属度函数用于定义元素对模糊集合的隶属程度,常见有三角形、梯形、高斯型等。
(二)模糊规则
模糊规则是模糊逻辑控制的核心,以 “if - then” 形式表达。例如,在红绿灯控制中,规则可以是 “if 当前道路车流量大且相邻道路车流量小,then 延长当前道路绿灯时间”。这些规则基于交通专家经验和实际交通特性制定,多条规则共同构成模糊规则库。
(三)模糊推理与去模糊化
模糊推理依据输入变量(如各方向车流量)对模糊集合的隶属度,结合模糊规则库得出输出变量(如绿灯延长时间)对相应模糊集合的隶属度。去模糊化则是将模糊推理得到的模糊结果转化为确切的输出值,常用方法有重心法、最大隶属度法等。以重心法为例,它通过计算模糊输出集合隶属度函数曲线与横坐标围成区域的重心,确定最终输出值,即绿灯延长的具体时长。
三、基于模糊逻辑的红绿灯控制模型
(一)输入变量
- 当前道路车流量:通过设置在道路上的车辆检测器(如地磁传感器、视频检测器等)获取单位时间内通过的车辆数,以此衡量当前道路的交通负荷。
- 相邻道路车流量:检测相邻道路的车流量,了解周边交通状况,为信号灯时间分配提供参考。
- 排队长度