✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🌿 往期回顾可以关注主页,点击搜索
🔥 内容介绍
智能优化算法一直是计算机科学和工程领域的研究热点之一。在众多的优化算法中,高尔夫优化算法(GOA)作为一种新兴的智能优化算法,近年来备受关注。本文将介绍高尔夫优化算法的基本原理、特点以及在实际问题中的应用。
在这篇研究文章中,我们秉承“没有免费午餐”定理的原则,并将其作为驱动力,引入一种基于游戏的创新元启发式技术,称为高尔夫优化算法(GOA)。GOA 的结构经过精心设计,分为两个独特的阶段,即探索和开发,从高尔夫运动中观察到的战略动态和球员行为中汲取灵感。通过涵盖 52 个目标函数和 4 个实际工程应用的综合评估,GOA 的功效得到了严格检验。优化过程的结果揭示了GOA在勘探和开发策略方面的卓越熟练程度,有效地实现了两者之间的和谐平衡。对 10 种竞争算法的比较分析表明,GOA 在一系列性能指标上具有明显的、统计上显着的优势。此外,考虑到网络弹性,GOA 成功应用于复杂的能源承诺问题,突显了其解决复杂工程挑战的能力。为了方便研究界,我们提供了所提出的 GOA 方法的 MATLAB 实现代码,确保可访问性并促进进一步探索。
高尔夫优化算法是一种受到高尔夫比赛启发而提出的智能优化算法。在高尔夫比赛中,选手需要利用有限的击球次数将球尽量打入洞内,而高尔夫优化算法正是基于这种击球过程提出的。算法的基本原理是模拟高尔夫球在球场上的运动过程,通过模拟击球的力度和方向来寻找最优解。与传统的优化算法相比,高尔夫优化算法具有较强的全局搜索能力和较快的收敛速度,能够有效地应用于求解复杂的优化问题。
高尔夫优化算法具有以下几个特点:首先,算法采用了一种新颖的个体更新机制,通过模拟击球的过程来更新个体的位置和速度,从而实现对解空间的探索。其次,算法引入了一种自适应的击球策略,能够根据问题的特性和个体的状态来动态调整参数,提高了算法的适应性和鲁棒性。最后,算法还采用了一种多层次的群体协作机制,能够有效地避免陷入局部最优解,从而提高了算法的全局搜索能力。
在实际问题中,高尔夫优化算法已经得到了广泛的应用。例如,在工程优化领域,算法可以用于解决结构优化、参数优化等问题;在机器学习领域,算法可以用于训练神经网络、优化模型参数等任务;在实时调度领域,算法可以用于优化任务分配、资源调度等方面。通过在这些领域的应用,高尔夫优化算法已经取得了一些令人瞩目的成绩,表现出了较高的效率和鲁棒性。
总的来说,高尔夫优化算法作为一种新兴的智能优化算法,具有较强的全局搜索能力和较快的收敛速度,能够有效地应用于求解复杂的优化问题。随着对算法的进一步研究和改进,相信高尔夫优化算法将在更多领域展现出其强大的优化能力,为实际问题的求解提供更加有效的解决方案。
📣 部分代码
function fun_plot(fun_name)
[lowerbound,upperbound,dimension,fitness]=fun_info(fun_name);
switch fun_name
case 'F1'
x=-100:2:100; y=x; %[-100,100]
case 'F2'
x=-100:2:100; y=x; %[-10,10]
case 'F3'
x=-100:2:100; y=x; %[-100,100]
case 'F4'
x=-100:2:100; y=x; %[-100,100]
case 'F5'
x=-200:2:200; y=x; %[-5,5]
case 'F6'
x=-100:2:100; y=x; %[-100,100]
case 'F7'
x=-1:0.03:1; y=x %[-1,1]
case 'F8'
x=-500:10:500;y=x; %[-500,500]
case 'F9'
x=-5:0.1:5; y=x; %[-5,5]
case 'F10'
x=-20:0.5:20; y=x;%[-500,500]
case 'F11'
x=-500:10:500; y=x;%[-0.5,0.5]
case 'F12'
x=-10:0.1:10; y=x;%[-pi,pi]
case 'F13'
x=-5:0.08:5; y=x;%[-3,1]
case 'F14'
x=-100:2:100; y=x;%[-100,100]
case 'F15'
x=-5:0.1:5; y=x;%[-5,5]
case 'F16'
x=-1:0.01:1; y=x;%[-5,5]
case 'F17'
x=-5:0.1:5; y=x;%[-5,5]
case 'F18'
x=-5:0.06:5; y=x;%[-5,5]
case 'F19'
x=-5:0.1:5; y=x;%[-5,5]
case 'F20'
x=-5:0.1:5; y=x;%[-5,5]
case 'F21'
x=-5:0.1:5; y=x;%[-5,5]
case 'F22'
x=-5:0.1:5; y=x;%[-5,5]
case 'F23'
x=-5:0.1:5; y=x;%[-5,5]
end
L=length(x);
f=[];
for i=1:L
for j=1:L
if strcmp(fun_name,'F15')==0 && strcmp(fun_name,'F19')==0 && strcmp(fun_name,'F20')==0 && strcmp(fun_name,'F21')==0 && strcmp(fun_name,'F22')==0 && strcmp(fun_name,'F23')==0
f(i,j)=fitness([x(i),y(j)]);
end
if strcmp(fun_name,'F15')==1
f(i,j)=fitness([x(i),y(j),0,0]);
end
if strcmp(fun_name,'F19')==1
f(i,j)=fitness([x(i),y(j),0]);
end
if strcmp(fun_name,'F20')==1
f(i,j)=fitness([x(i),y(j),0,0,0,0]);
end
if strcmp(fun_name,'F21')==1 || strcmp(fun_name,'F22')==1 ||strcmp(fun_name,'F23')==1
f(i,j)=fitness([x(i),y(j),0,0]);
end
end
end
surfc(x,y,f,'LineStyle','none');
end