【桁架优化】基于粒子群算法进行桁架优化附matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🌿 往期回顾可以关注主页,点击搜索

🔥 内容介绍

桁架结构是一种常见的工程结构,其设计和优化对于提高结构的稳定性和承载能力具有重要意义。在工程实践中,通过优化桁架结构的设计参数,可以使得结构在保证强度和刚度的前提下,减少材料消耗,降低成本,提高结构的整体性能。粒子群算法作为一种优化算法,具有全局寻优能力和较好的收敛性,因此在桁架优化中得到了广泛的应用。

粒子群算法是一种模拟鸟群觅食行为的优化算法,通过模拟鸟群中个体之间的信息交流和协作,来寻找最优解。在桁架优化中,可以将每个设计参数看作是一个粒子,通过不断迭代更新粒子的位置和速度,最终找到最优的设计参数组合,从而得到最优的桁架结构。

在进行桁架优化时,首先需要确定设计参数的范围和约束条件,然后通过粒子群算法来搜索最优解。在算法的迭代过程中,粒子根据自身的位置和速度不断更新,同时根据历史最优解和全局最优解来调整搜索方向,最终收敛到最优解。通过粒子群算法,可以有效地优化桁架结构的设计参数,使得结构在保证强度和刚度的前提下,达到最佳的性能指标。

除了确定设计参数和优化算法外,桁架优化还需要考虑结构的稳定性和可行性。在进行桁架优化时,需要考虑结构的受力情况、材料的可行性和制造工艺等因素,以确保优化后的桁架结构能够满足实际工程需求。因此,在进行桁架优化时,需要综合考虑各种因素,以得到最优的设计方案。

总之,基于粒子群算法进行桁架优化是一种有效的方法,可以通过优化设计参数来提高桁架结构的整体性能。在工程实践中,通过粒子群算法的应用,可以使得桁架结构在保证强度和刚度的前提下,达到最佳的性能指标,从而满足实际工程需求。因此,粒子群算法在桁架优化中具有重要的应用前景,值得进一步研究和探讨。

📣 部分代码

function W = truss2ex10weight(Swarm)global number;number=number+1;[SwarmSize, Dim] = size(Swarm);% inputsn=6; m=10; LL=914.4; E=6894.757; P=445.5; sigU=17.225; sigL=-17.225; unit=0.00272;joint=[2*LL,LL;2*LL,0;LL,LL;LL,0;0,LL;0,0];assembly=[5,3;3,1;6,4;4,2;4,3;2,1;6,3;5,4;4,1;3,2];forceJ=[-1,0,0;-1,0,-P;-1,0,0;-1,0,-P;2,1,1;2,1,1];index = 2;W=zeros(1,SwarmSize);% end of inputsfor q=1:SwarmSize;    X=Swarm(q,:);    stretch= E.*X;    [Jforce,Mforce,Jdispl,Mdispl,stress,Weight] = ...    truss2(n,m,joint,assembly,forceJ,stretch,index,X,E,unit);    Mforce; stress;Weight;Jdispl;    SUU=((abs(stress)/sigU)-1);    t=1;h=2*n;    for s=1:2:h;        D(s)=Jdispl(t,2);        D(s+1)=Jdispl(t,3);        t=t+1;    end    DUU=((abs(D)/5.08)-1);        %Dynamically modified penaity value (NI=is the algorithm,s current    %iteration number)        %r=10;    %r=10*(1+0.2*(number-1));      r=number*(number^0.5);   %Determine the power of the penalty function    for qq=1:m        if SUU(qq)<1           z(qq)=1;        else           z(qq)=2;        end    %Determine the multy-stage assignment function        if SUU(qq)<=0           h(qq)=0;        elseif SUU(qq)<0.001           h(qq)=10;        elseif SUU(qq)<0.1           h(qq)=20;        elseif SUU(qq)<1           h(qq)=100;        else           h(qq)=300;        end          C(qq)=r*(h(qq)*max(0,SUU(qq)^z(qq)));          du(qq)=(h(qq)*max(0,SUU(qq)^z(qq)));          C1=sum(C);          d1=sum(du);    end  %for qq          %Determine the power of the penalty function        for ss=1:2*n            if DUU(ss)<1           y(ss)=1;        else           y(ss)=2;        end    %Determine the multy-stage assignment function        if DUU(ss)<=0           l(ss)=0;        elseif DUU(ss)<0.001           l(ss)=10;        elseif DUU(ss)<0.1           l(ss)=20;        elseif DUU(ss)<1           l(ss)=100;        else           l(ss)=300;        end              V(ss)=r*(l(ss)*(max(0,DUU(ss)^y(ss))));        ku(ss)=(l(ss)*(max(0,DUU(ss)^y(ss))));        C2=sum(V);        d2=sum(ku);            end  %for ss      Penalty=d1+d2;        We=Weight;    W(q) =Weight;end  %for q

⛳️ 运行结果

🔗 参考文献

[1]林建荣.基于粒子群算法的钢桁架拱桥优化设计[D].重庆大学,2011.

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码、论文复现、期刊合作、论文辅导及科研仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化
2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

天天Matlab科研工作室

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值