✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🌿 往期回顾可以关注主页,点击搜索
🔥 内容介绍
桁架结构是一种常见的工程结构,其设计和优化对于提高结构的稳定性和承载能力具有重要意义。在工程实践中,通过优化桁架结构的设计参数,可以使得结构在保证强度和刚度的前提下,减少材料消耗,降低成本,提高结构的整体性能。粒子群算法作为一种优化算法,具有全局寻优能力和较好的收敛性,因此在桁架优化中得到了广泛的应用。
粒子群算法是一种模拟鸟群觅食行为的优化算法,通过模拟鸟群中个体之间的信息交流和协作,来寻找最优解。在桁架优化中,可以将每个设计参数看作是一个粒子,通过不断迭代更新粒子的位置和速度,最终找到最优的设计参数组合,从而得到最优的桁架结构。
在进行桁架优化时,首先需要确定设计参数的范围和约束条件,然后通过粒子群算法来搜索最优解。在算法的迭代过程中,粒子根据自身的位置和速度不断更新,同时根据历史最优解和全局最优解来调整搜索方向,最终收敛到最优解。通过粒子群算法,可以有效地优化桁架结构的设计参数,使得结构在保证强度和刚度的前提下,达到最佳的性能指标。
除了确定设计参数和优化算法外,桁架优化还需要考虑结构的稳定性和可行性。在进行桁架优化时,需要考虑结构的受力情况、材料的可行性和制造工艺等因素,以确保优化后的桁架结构能够满足实际工程需求。因此,在进行桁架优化时,需要综合考虑各种因素,以得到最优的设计方案。
总之,基于粒子群算法进行桁架优化是一种有效的方法,可以通过优化设计参数来提高桁架结构的整体性能。在工程实践中,通过粒子群算法的应用,可以使得桁架结构在保证强度和刚度的前提下,达到最佳的性能指标,从而满足实际工程需求。因此,粒子群算法在桁架优化中具有重要的应用前景,值得进一步研究和探讨。
📣 部分代码
function W = truss2ex10weight(Swarm)
global number;
number=number+1;
[SwarmSize, Dim] = size(Swarm);
% inputs
n=6; m=10; LL=914.4; E=6894.757; P=445.5; sigU=17.225; sigL=-17.225; unit=0.00272;
joint=[2*LL,LL;2*LL,0;LL,LL;LL,0;0,LL;0,0];
assembly=[5,3;3,1;6,4;4,2;4,3;2,1;6,3;5,4;4,1;3,2];
forceJ=[-1,0,0;-1,0,-P;-1,0,0;-1,0,-P;2,1,1;2,1,1];
index = 2;
W=zeros(1,SwarmSize);
% end of inputs
for q=1:SwarmSize;
X=Swarm(q,:);
stretch= E.*X;
[Jforce,Mforce,Jdispl,Mdispl,stress,Weight] = ...
truss2(n,m,joint,assembly,forceJ,stretch,index,X,E,unit);
Mforce; stress;Weight;Jdispl;
SUU=((abs(stress)/sigU)-1);
t=1;h=2*n;
for s=1:2:h;
D(s)=Jdispl(t,2);
D(s+1)=Jdispl(t,3);
t=t+1;
end
DUU=((abs(D)/5.08)-1);
%Dynamically modified penaity value (NI=is the algorithm,s current
%iteration number)
%r=10;
%r=10*(1+0.2*(number-1));
r=number*(number^0.5);
%Determine the power of the penalty function
for qq=1:m
if SUU(qq)<1
z(qq)=1;
else
z(qq)=2;
end
%Determine the multy-stage assignment function
if SUU(qq)<=0
h(qq)=0;
elseif SUU(qq)<0.001
h(qq)=10;
elseif SUU(qq)<0.1
h(qq)=20;
elseif SUU(qq)<1
h(qq)=100;
else
h(qq)=300;
end
C(qq)=r*(h(qq)*max(0,SUU(qq)^z(qq)));
du(qq)=(h(qq)*max(0,SUU(qq)^z(qq)));
C1=sum(C);
d1=sum(du);
end %for qq
%Determine the power of the penalty function
for ss=1:2*n
if DUU(ss)<1
y(ss)=1;
else
y(ss)=2;
end
%Determine the multy-stage assignment function
if DUU(ss)<=0
l(ss)=0;
elseif DUU(ss)<0.001
l(ss)=10;
elseif DUU(ss)<0.1
l(ss)=20;
elseif DUU(ss)<1
l(ss)=100;
else
l(ss)=300;
end
V(ss)=r*(l(ss)*(max(0,DUU(ss)^y(ss))));
ku(ss)=(l(ss)*(max(0,DUU(ss)^y(ss))));
C2=sum(V);
d2=sum(ku);
end %for ss
Penalty=d1+d2;
We=Weight;
W(q) =Weight;
end %for q
⛳️ 运行结果
🔗 参考文献
[1]林建荣.基于粒子群算法的钢桁架拱桥优化设计[D].重庆大学,2011.