✅作者简介:热爱数据处理、建模、算法设计的Matlab仿真开发者。
🍎更多Matlab代码及仿真咨询内容点击 🔗:Matlab科研工作室
🍊个人信条:格物致知。
近年来,随着移动通信技术的发展,对无线通信系统的数据速率和频谱效率提出了越来越高的要求。多输入多输出 (MIMO) 技术和非正交多址接入 (NOMA) 技术作为两种重要的无线通信技术,近年来得到了广泛的研究和应用。MIMO 技术通过在发射端和接收端使用多个天线来提高数据速率和频谱效率,而 NOMA 技术则通过将多个用户叠加到同一个资源块中来提高系统容量。将 MIMO 技术与 NOMA 技术相结合的 MIMO-NOMA 系统,能够充分利用空间复用和功率域复用,实现更高的系统性能。
本文将对 MIMO-NOMA 系统的总速率进行仿真,并分析其性能。
系统模型
仿真结果
图 1 展示了不同用户数下的系统总速率。可以看到,随着用户数的增加,系统总速率也随之增加。这是因为 NOMA 技术能够将更多的用户叠加到同一个资源块中,从而提高系统容量。
图 2 展示了不同功率分配策略下的系统总速率。可以看到,当采用最优功率分配策略时,系统总速率最高。这是因为最优功率分配策略能够最大程度地利用功率资源,提高系统性能。
结论
仿真结果表明,MIMO-NOMA 系统能够显著提高系统总速率。与传统的 MIMO-OMA 系统相比,MIMO-NOMA 系统能够将更多的用户叠加到同一个资源块中,从而实现更高的系统容量。此外,功率分配策略对系统性能有很大的影响,最优功率分配策略能够最大程度地提高系统总速率。
未来展望
未来,MIMO-NOMA 系统将进一步发展,并应用于各种无线通信场景。例如,MIMO-NOMA 技术可以应用于物联网 (IoT) 系统,以支持大量低功耗设备的连接。此外,MIMO-NOMA 技术还可以应用于车联网 (IoV) 系统,以提供更可靠的通信和更高效的数据传输。
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类