✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、期刊写作与指导,代码获取、论文复现及科研仿真。
🍎更多Matlab代码及仿真定制内容点击 🔗:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
摘要: 本文研究了欠驱动双摆系统Acrobot的控制问题。Acrobot作为一种典型的欠驱动系统,其控制难度较大,传统的控制方法难以达到理想的控制效果。本文采用部分反馈线性化的方法,设计控制器使Acrobot能够实现摆角的跟踪控制。首先,对Acrobot动力学模型进行分析,推导出其动力学方程。然后,利用部分反馈线性化技术,将非线性系统转化为等效的线性系统,并设计状态反馈控制器。最后,利用Matlab进行仿真,验证所设计控制器的有效性,并分析不同参数对系统性能的影响。仿真结果表明,所设计的基于部分反馈线性化的控制器能够有效地控制Acrobot的运动,实现摆角的精确跟踪。
关键词: Acrobot; 欠驱动系统; 部分反馈线性化; 状态反馈控制; Matlab仿真
1. 引言
欠驱动系统是指系统控制输入的个数少于自由度的个数的系统。这类系统由于其内在的非线性特性和欠驱动性,控制难度较大,成为控制领域的研究热点。Acrobot作为一种典型的欠驱动双摆系统,由两个刚性杆通过一个旋转关节连接而成,只有在连接处一个电机驱动,而另一个关节则没有直接的驱动输入。其动力学模型复杂,具有强烈的非线性、耦合特性,控制精度要求较高,因此其控制问题一直是控制理论研究的难点。
传统的控制方法,如PID控制、模糊控制等,在控制Acrobot时存在一些不足。例如,PID控制需要反复调节参数,难以获得最优控制效果;模糊控制则依赖于大量的专家经验,鲁棒性较差。因此,寻找一种能够有效控制Acrobot,并具有较好鲁棒性的控制方法至关重要。
部分反馈线性化作为一种有效的非线性控制方法,能够将非线性系统转化为等效的线性系统,从而利用线性控制理论设计控制器。本文将采用部分反馈线性化的方法设计Acrobot的控制器,并通过Matlab仿真验证其有效性。
2. Acrobot动力学模型
Acrobot的动力学模型可以利用拉格朗日方程推导。设m1, m2分别为两杆的质量,l1, l2分别为两杆的长度,I1, I2分别为两杆的转动惯量,g为重力加速度,θ1, θ2分别为两杆与竖直方向的夹角。则Acrobot的动力学方程可表示为:
M(θ)θ̈ + C(θ, θ̇)θ̇ + G(θ) = τ
其中:
-
M(θ)为惯性矩阵;
-
C(θ, θ̇)为科里奥利力和向心力矩阵;
-
G(θ)为重力项;
-
τ为控制输入,只作用于第一个关节。
具体的表达式较为复杂,此处省略。
3. 部分反馈线性化控制器的设计
部分反馈线性化方法的核心思想是通过适当的坐标变换和反馈控制,将非线性系统转化为一个等效的线性系统,然后利用线性控制理论设计控制器。对于Acrobot系统,由于只有一个控制输入,我们只能对一个输出进行线性化。通常选择第一个关节的角度θ1作为输出。
首先,进行坐标变换,选择合适的输出函数y = h(x),其中x = [θ1, θ2, θ̇1, θ̇2]<sup>T</sup>为系统的状态变量。然后,计算输出的Lie导数,判断系统的可线性化性。如果系统可部分反馈线性化,则可以设计一个状态反馈控制器,使得闭环系统具有期望的动态特性。
具体步骤如下:
-
选择输出函数: 选择y = θ1作为输出函数。
-
计算Lie导数: 计算L<sub>f</sub>h, L<sub>g</sub>h, L<sub>f</sub><sup>2</sup>h 等Lie导数,其中f为系统向量场,g为控制向量场。
-
判断可线性化性: 判断是否存在一个输入u使得系统可线性化。
-
设计状态反馈控制器: 根据线性化后的系统,设计一个状态反馈控制器,例如利用极点配置法或LQR方法,确定控制器增益。
4. 结论
本文采用部分反馈线性化的方法设计了Acrobot欠驱动双摆系统的控制器,并利用Matlab进行了仿真验证。仿真结果表明,所设计的控制器能够有效地控制Acrobot的运动,实现摆角的精确跟踪。部分反馈线性化方法能够有效处理Acrobot系统的非线性特性,具有较好的控制性能。未来研究可以进一步考虑加入扰动观测器,提高系统的鲁棒性,以及研究更复杂的欠驱动系统控制问题。
⛳️ 运行结果
🔗 参考文献
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=407375&tag=1
🎈 部分理论引用网络文献,若有侵权联系博主删除
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类