【欠驱动机器人学】非线性动力学与欠驱动机械系统的控制方法研究(Matlab代码实现)

   💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

欠驱动机器人学的非线性动力学与控制方法研究

一、欠驱动系统的定义与核心问题

二、非线性动力学建模方法

三、控制方法分类与创新策略

四、应用案例与效果评估

五、权威研究机构与学者

六、挑战与未来方向

七、结论

📚2 运行结果

🎉3 参考文献 

🌈4 Matlab代码、文档下载


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能解答你胸中升起的一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

详细文档见末尾下载。

I. 值迭代(双积分器):  
(a) 运行双积分器的值迭代代码,计算最小时间问题的最优策略和最优代价函数。通过回答以下问题,将结果与我们在课程中找到的解析解(课程笔记中的示例9.2也有)进行比较。  
1)找到一个形式为(2,𝑞₀)的初始条件,使得值迭代策略采取的行动方向与真实最优策略的方向完全相反。

欠驱动机器人学的非线性动力学与控制方法研究

一、欠驱动系统的定义与核心问题

欠驱动系统指控制输入维度小于系统自由度维度的机械系统,其状态空间维度显著高于控制变量维度(如双足机器人、四足机器人等)。这类系统通过减少执行器数量实现轻量化、低成本和动态性能优化,但控制难度极高,需深入理解非线性动力学特性。其核心问题包括:

  1. 非完整约束:表现为速度或加速度层面的不可积约束(如轮式机器人横向移动限制),导致系统无法通过局部控制直接调节所有自由度。
  2. 可控性局限:欠驱动系统通常仅满足局部可控性条件(如Sussmann提出的少时间局部可控性),全局可控性需依赖重力势能或外部约束辅助。
  3. 动力学耦合:主动关节与被动关节间的非线性耦合效应显著,需通过惯性矩阵分块分析驱动与欠驱动子系统的相互作用。
二、非线性动力学建模方法

欠驱动系统的建模需结合几何约束与能量守恒原理,主要方法包括:

  1. 拉格朗日方程:适用于描述关节空间内的惯性力、科氏力与重力平衡关系,通过分块惯性矩阵揭示驱动与欠驱动子系统的动力学耦合。

  2. D(q)\ddot{q} + C(q,\dot{q})\dot{q} + G(q) = \tau

    其中,惯性矩阵D(q)D(q)正定对称,科氏力矩阵C(q,q˙)C(q,q˙​)满足反对称性。

  3. 虚拟约束方法:通过定义广义坐标间的几何关系(如起重机吊重轨迹约束),将系统自由度降维并构造等效线性模型。例如,虚拟完整约束可将起重机系统转换为部分反馈线性化形式,实现平衡位置稳定。

  4. Chaplygin方程:针对非完整约束系统(如独轮车机器人),通过引入广义速度参数化运动轨迹,解决接触力与运动自由度间的关联问题。

  5. 刚柔耦合建模:结合刚性连杆与柔性绳索的动力学特性,建立包含不确定性和外部扰动的混杂模型(如欠驱动桁架式行走机器人)。

三、控制方法分类与创新策略

欠驱动系统的控制需突破传统线性方法限制,主要策略包括:

方法类别技术特点典型应用引用
滑模控制通过滑模面设计实现鲁棒跟踪,采用超扭曲算法抑制抖振无人自行车平衡、倒立摆控制
能量整形方法基于IDA-PBC框架调整系统能量分布,结合积分动作补偿恒定扰动惯性轮摆、球形梁系统
部分反馈线性化将非线性子系统转换为线性形式,设计状态反馈控制器Acrobot摆角跟踪
虚拟约束与轨迹规划构造驱动状态理想轨迹,通过LQR调节器实现跟踪起重机稳定、桥式吊车操作
混杂控制结合摇起控制与平衡控制律,利用非光滑Lyapunov函数保证全局稳定性Acrobot、Pendubot系统
模糊自适应控制模糊逻辑逼近不确定项,串级滑模结构实现多状态协调非确定欠驱动机械臂
四、应用案例与效果评估
  1. 桥式吊车系统:南开大学方勇纯团队提出轨迹规划与跟踪控制方法,使32吨级吊车运送效率提升20%,事故率降低50%以上,定位精度达毫米级,适用于核废料处理等高危场景。
  2. 无人自行车:北京信息科技大学团队采用欠驱动滑模控制器(USMC),实现水平面自平衡,动态性能优于PD控制,抗扰能力提升30%以上。
  3. 四足机器人灵巧手:清华大学张文增团队设计欠驱动自适应机构,通过单电机驱动多关节,实现物体包络抓取,抓握力自适应范围达1:10,重量较传统灵巧手减少60%。
  4. 水下航行器:集成几何力学框架的SE(3)轨迹跟踪算法,使欠驱动AUV在三维空间内实现航迹跟踪误差收敛,适应洋流扰动。
五、权威研究机构与学者
  • MIT Russ Tedrake:开创欠驱动机器人算法研究,提出基于优化的运动规划框架,应用于双足行走与飞行器控制。
  • 清华大学张文增:在欠驱动灵巧手领域取得突破,获180余项专利,指导学生多次获国际设计大奖。
  • 北方工业大学何广平:专著《欠驱动机器人动力学与控制》系统阐述全局稳定控制与变约束系统理论,推动工程应用。
  • 南开大学方勇纯:提出轨迹规划-跟踪分层控制架构,解决吊车系统暂态性能优化难题,成果发表于《Automatica》。
六、挑战与未来方向
  1. 非线性耦合难题:直接驱动与欠驱动部分的强耦合导致控制器需同步协调多自由度,线性化后系统常不可控。
  2. 鲁棒性提升:参数摄动与外部扰动(如海浪对AUV的影响)需结合自适应机制与干扰观测器。
  3. 实时计算需求:基于优化的控制方法(如MPC)计算负荷大,需开发轻量化算法。
  4. 高维系统扩展:现有方法多针对2-3自由度系统,多自由度欠驱动机械臂(如7自由度人形手臂)控制仍缺乏通用框架。
  5. 物理约束整合:执行器饱和、关节限位等约束需融入控制律设计,避免实际系统失效。
七、结论

欠驱动机器人学的核心在于通过精巧的非线性动力学建模与先进控制策略,实现“以少控多”。尽管面临可控性局限与强非线性耦合等挑战,滑模控制、能量整形、虚拟约束等方法已在工业、救援、航天等领域取得显著成效。未来,结合强化学习的自适应控制、基于物理信息的神经网络建模,以及分布式执行器协同优化,有望进一步突破现有技术瓶颈,推动欠驱动系统向高维、高动态场景扩展。

📚2 运行结果

运行结果图比较多,就不一一展示。

部分代码:

% First row is x, second is y (position of vertices)
w = 0.5;
Obs{1} = [0 0;5 0;5 w;0 w]';
Obs{2} = [0 0;2*w 0;w 10;0 10]';
Obs{3} = [0 10-w;5 10;5 10+w;0 10+w]';
Obs{4} = [5-w 0;5+w 0;5+w 5;5 5]';
Obs{5} = [5-w 10+w;5+w 10+w;5+w 7;5 7]';
Obs{6} = [4 5;5+w 5;5+w 5+w;4 5+w]';
Obs{7} = [4 7;5+w 7;5+w 7+w;4 7+w]';

% Bounds on world
world_bounds_x = [-8,10];
world_bounds_y = [-4,14];


% Draw obstacles
figure(1); clf; hold on;
axis([world_bounds_x world_bounds_y]);

for k = 1:size(Obs,2)
    patch(Obs{k}(1,:),Obs{k}(2,:),'r');
end

% Start and goal positions
xy_start = [4;1]; plot(xy_start(1),xy_start(2),'bo','MarkerFaceColor','b','MarkerSize',10);
xy_goal = [-4;6]; plot(xy_goal(1),xy_goal(2),'go','MarkerFaceColor','g','MarkerSize',10);

% Initialize RRT. The RRT will be represented as a 2 x N list of points. So
% each column represents a vertex of the tree.
rrt_verts = zeros(2,1000);
rrt_verts(:,1) = xy_start;
N = 1;
nearGoal = false; % This will be set to true if goal has been reached
minDistGoal = 0.25; % This is the convergence criterion. We will declare
                    % success when the tree reaches within 0.25 in distance
                    % from the goal. DO NOT MODIFY.

% Extension parameter
d = 0.5; % This controls how far the RRT extends in each step. DO NOT MODIFY.

%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% RRT algorithm
while ~nearGoal
   % Sample point
    rnd = rand(1);
    % With probability 0.05, sample the goal. This promotes movement to the
    % goal.
    if rnd < 0.05
        xy = xy_goal;
    else
        %% FILL ME IN
        % Sample (uniformly) from space (with probability 0.95). The space is defined
        % with the bounds world_bounds_x and world_bounds_y defined above.
        % So, the x coordinate should be sampled in the interval
        % world_bounds_x and the y coordinate from world_bounds_y.
        xy = [world_bounds_x(1)+(world_bounds_x(2)-world_bounds_x(1))*rand(1);world_bounds_y(1)+(world_bounds_y(2)-world_bounds_y(1))*rand(1)]; % Should be a 2 x 1 vector
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    end
    
    %% FILL ME IN %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    % Check if sample is collision free
    collFree = isCollisionFree(Obs,xy); % Write this function. 
                                        % Your code from part (a) will be useful here.
    
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%                                        
                                        
    % If it's not collision free, continue with loop
    if ~collFree
        continue;
    end
    
    %% FILL ME IN %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    % If it is collision free, find closest point in existing tree. 
    % The points in the existing tree are rrt_verts(:,1:N)
    closest_vert = closestVertex(rrt_verts(:,1:N),xy); % Write this function
        
    % Extend tree towards xy from closest_vert. Use the extension parameter
    % d defined above as your step size. In other words, the Euclidean
    % distance between new_vert and closest_vert should be d (do not modify
    % d. It should be 0.5).
    new_vert = closest_vert+d*(xy-closest_vert)/norm(xy-closest_vert);
    
    % Check if new_vert is collision free
    collFree = isCollisionFree(Obs,new_vert); % Same function you wrote before.
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    
    
    % If it is not collision free, continue with loop
     if ~collFree
        continue;
     end
     
    % Plot extension (Comment the next 3 lines out if you want your code to
    % run a bit quicker. The plotting is useful for debugging though.)
    figure(1)
    plot(new_vert(1),new_vert(2),'bo','MarkerFaceColor','b','MarkerSize',5);

🎉3 参考文献 

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)

[1]陈炜,余跃庆,张绪平.欠驱动机器人研究综述[J].机械设计与研究, 2005, 21(4):5.

[2]董玉红.欠驱动力合作机器人的驱动及控制技术研究[D].哈尔滨工程大学[2025-03-11].

[3]崔宝影,程权成.欠驱动机器人系统稳定性与跟踪控制研究[J].三门峡职业技术学院学报, 2024, 23(2):129-133.

🌈Matlab代码、文档下载

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

荔枝科研社

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值