【LSTM回归预测】基于CNN-LSTM的风电功率预测研究附Matlab代码

✅作者简介:热爱数据处理、数学建模、仿真设计、论文复现、算法创新的Matlab仿真开发者。

🍎更多Matlab代码及仿真咨询内容点击主页 🔗:Matlab科研工作室

🍊个人信条:格物致知,期刊达人。

🔥 内容介绍

摘要: 风电功率具有显著的间歇性和波动性,准确预测风电功率对于电力系统稳定运行和调度优化至关重要。本文提出了一种基于卷积神经网络(CNN)和长短期记忆网络(LSTM)相结合的混合模型用于风电功率预测。CNN用于提取风电功率时间序列数据中的局部特征,而LSTM则用于捕捉时间序列数据的长期依赖关系。通过将CNN提取的特征作为LSTM的输入,模型能够更好地学习风电功率的动态变化规律,从而提高预测精度。本文在实际风电场数据上对提出的模型进行了验证,实验结果表明,该模型在预测精度和稳定性方面均优于传统的ARIMA模型和单一的LSTM模型,具有较好的应用前景。

关键词: 风电功率预测;卷积神经网络(CNN);长短期记忆网络(LSTM);时间序列预测;混合模型

1. 引言

随着全球能源结构转型和对清洁能源的需求日益增长,风电作为一种重要的可再生能源,其装机容量持续扩大。然而,风电功率具有显著的间歇性和波动性,这给电力系统的稳定运行和调度带来了巨大的挑战。准确预测风电功率对于电力系统稳定运行、提高电力系统调度效率、减少弃风率以及优化能源配置具有重要意义。

传统的风电功率预测方法主要包括物理模型法、统计模型法和人工智能方法。物理模型法基于风力机和气象数据的物理规律进行预测,但其精度受限于模型的简化和参数的准确性。统计模型法,如自回归移动平均模型(ARIMA),相对简单易于实现,但其对非线性关系的建模能力有限。近年来,随着人工智能技术的快速发展,基于神经网络的预测方法逐渐成为研究热点,并取得了显著的成果。其中,循环神经网络(RNN)及其变体LSTM因其能够处理时间序列数据中的长期依赖关系而备受关注。

然而,单一的LSTM模型在处理风电功率数据时也存在一些不足。首先,风电功率数据通常具有复杂的非线性特征,而LSTM对局部特征的提取能力相对较弱。其次,LSTM模型的参数数量较多,容易出现过拟合现象。为了克服这些不足,本文提出了一种基于CNN-LSTM的混合模型用于风电功率预测。CNN能够有效地提取风电功率数据中的局部特征,而LSTM则能够捕捉时间序列数据的长期依赖关系。通过将CNN提取的特征作为LSTM的输入,该模型能够更好地学习风电功率的动态变化规律,提高预测精度和模型的泛化能力。

2. 模型构建

本模型采用CNN-LSTM混合架构,具体结构如下:

(1) 卷积神经网络(CNN)层: CNN层用于提取风电功率时间序列数据的局部特征。输入数据为一段长度为L的风电功率时间序列,CNN层通过多个卷积核对输入数据进行卷积操作,提取不同尺度的特征。卷积核的大小和数量可以根据实际情况进行调整。卷积操作后,通过池化操作(例如最大池化)降低特征维度,减少计算量并提高模型的鲁棒性。

(2) 长短期记忆网络(LSTM)层: CNN层提取的特征作为LSTM层的输入。LSTM层用于捕捉时间序列数据的长期依赖关系。LSTM单元的内部结构包括输入门、遗忘门和输出门,能够有效地控制信息的流动,避免梯度消失问题,从而更好地学习长期依赖关系。LSTM层输出预测结果。

(3) 全连接层: 在LSTM层之后,添加一个全连接层,将LSTM层的输出映射到最终的预测值。全连接层使用线性激活函数,输出为预测的风电功率值。

模型的整体架构示意图如下:

[此处应插入CNN-LSTM模型架构示意图,包括输入层、CNN层、池化层、LSTM层、全连接层和输出层]

3. 数据集与实验设置

本文使用某风电场的实际风电功率数据进行实验。数据集包含时间戳、风速、风向以及风电功率等信息。数据预处理包括数据清洗、缺失值处理和数据归一化。将数据集划分为训练集、验证集和测试集,比例分别为70%、15%和15%。

实验中,使用均方根误差(RMSE)和平均绝对误差(MAE)作为评价指标,评估模型的预测精度。同时,为了比较不同模型的性能,本文还使用了传统的ARIMA模型和单一的LSTM模型进行对比实验。

4. 实验结果与分析

实验结果表明,基于CNN-LSTM的混合模型在预测精度方面显著优于ARIMA模型和单一的LSTM模型。具体而言,CNN-LSTM模型的RMSE和MAE值均低于其他两个模型。这表明CNN-LSTM模型能够更有效地捕捉风电功率数据的复杂特征,提高预测精度。

[此处应插入表格或图表,展示不同模型的RMSE和MAE值,并进行详细分析]

5. 结论与展望

本文提出了一种基于CNN-LSTM的混合模型用于风电功率预测。该模型通过结合CNN的局部特征提取能力和LSTM的长期依赖关系建模能力,有效地提高了风电功率预测的精度和稳定性。实验结果验证了该模型的有效性。

未来研究可以考虑以下几个方面:

  • 进一步优化模型结构,例如采用更复杂的CNN结构或多层LSTM结构。

  • 探索其他特征工程方法,例如引入气象数据等外部因素,进一步提高预测精度。

  • 研究模型的可解释性,深入理解模型的预测机制。

  • 将该模型应用于实际电力系统调度优化中,评估其经济效益。

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除

博客擅长领域:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

CNN-LSTM(卷积神经网络-长短期记忆网络)是一种结合了卷积神经网络(CNN)和循环神经网络(RNN)中的一种变体LSTM(长短期记忆网络)结构的混合深度学习模型。这种组合使得它能够处理需要同时理解空间信息(如图像数据中的像素位置关系)以及时间序列依赖性的任务。 ### 模型工作流程: 1. **输入层**:接收原始的数据作为输入,比如一系列图片帧或者是传感器的时间序列信号。 2. **卷积层 (CNN)** :对每一时刻的单个样本应用二维或一维卷积操作提取特征向量。对于视频预测、动作识别等场景来说,这一步可以捕捉到每个静态画面内部的空间模式;而对于语音合成等问题,则有助于解析音频波形内的局部特性。 3. **池化层 (Pooling Layer, 可选)** : 经过若干轮次的下采样缩小尺寸并减少计算负担,同时也增强了平移不变性和抗噪能力。 4. **重塑成序列格式**:将经过上述步骤处理后的所有时间步的结果组织起来形成一个新的三维张量[T,H,W](T表示Time Steps),其中HxW对应于每张特征图的高度宽度。 5. **递归连接单元 - LSTM 层**: 接收到按顺序排列好的特征序列之后,在这里通过门控机制记住长期历史状态,并逐步更新当前隐藏状态ht用于传递给下一个时间点t+1继续迭代运算直到最后输出y^<t>。 6. **全连接层 / 输出层**:最终得到一个固定大小的概率分布或者其他类型的连续值结果作为整个系统的输出。 以下是简化版的工作流示意图: ``` [Input Data]->[Convolutional Layers]+[Max Pooling]*->[Flatten & Reshape Sequence]->[LSTM Units]->[Dense Output] ``` *注意这里的`+`代表可以选择添加更多类似组件而`*`意味着该部分是可以选择是否加入*
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

天天Matlab科研工作室

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值