5.可降阶的高阶微分方程

5.可降阶的高阶微分方程

5.1 高阶微分方程的基本概念

二阶及二阶以上的微分方程被称为 高阶微分方程 ‾ \underline{高阶微分方程} 高阶微分方程

5.2 如何解高阶微分方程?

“对于有些高阶微分方程,我们可以通过代换将它化成较低阶的方程来求解。”

此处有三种容易降阶的高阶微分方程的求解方法。

5.2.1 y ( n ) = f ( x ) y^{(n)}=f(x) y(n)=f(x)

对于 y ( n ) = f ( x ) y^{(n)}=f(x) y(n)=f(x) 型的微分方程,由于它的右端只含有自变量 x x x ,那么我们就可以对两端积分

得到 y ( n − 1 ) = ∫ f ( x )   d x + C y^{(n-1)}=\int f(x) \ dx+C y(n1)=f(x) dx+C

重复积分 y ( n − 2 ) = ∫ [ ∫ f ( x )   d x + C 1 ] + C 2 y^{(n-2)}=\int[\int f(x) \ dx+C_1]+C_2 y(n2)=[f(x) dx+C1]+C2 (注意这里由于双重积分号有特殊含义,所以加了中括号)

重复求积分即可得到我们要求的通解。

5.2.2 y ′ ′ = f ( x , y ′ ) y^{''}=f(x,y^{'}) y′′=f(x,y)

注意:方程右端不显含未知函数 y y y

不妨设 y ′ = p y^{'}=p y=p 那么就有 y ′ ′ = d p d x = p ′ y^{''}=\frac{dp}{dx}=p^{'} y′′=dxdp=p

原方程变为 p ′ = f ( x , p ) p^{'}=f(x,p) p=f(x,p)

假如此时我们得到了这个微分方程的解为 p = ϕ ( x , C 1 ) p=\phi(x,C_1) p=ϕ(x,C1)

又因为有 p = d y d x p=\frac{dy}{dx} p=dxdy ,我们再去解 d y d x = ϕ ( x , C 1 ) \frac{dy}{dx}=\phi(x,C_1) dxdy=ϕ(x,C1) 即可

5.2.3 y ′ ′ = f ( y , y ′ ) y^{''}=f(y,y^{'}) y′′=f(y,y)

显然这个方程隐含自变量 x x x .此时,我们依然令 y ′ = p y^{'}=p y=p

y ′ ′ = d p d x = d p d y ⋅ d y d x = p d p d y y^{''}=\frac{dp}{dx}=\frac{dp}{dy} \cdot \frac{dy}{dx}=p\frac{dp}{dy} y′′=dxdp=dydpdxdy=pdydp

那么原式就变成了 p d p d y = f ( y , p ) p\frac{dp}{dy}=f(y,p) pdydp=f(y,p)

那么这时候方程就变成了关于 y , p y,p y,p 的一阶微分方程。

这时求出方程的通解,再分离变量求积分便可得到我们要求的通解。

光看定义感觉很枯燥,不妨来看几个例题。

5.3 例题

例题部分每一个都对应上面的一种类型/解法

1. 解 y ′ ′ ′ = e 2 x − c o s x y^{'''}=e^{2x}-cosx y′′′=e2xcosx

题目对应题型1,我们直接求积分即可。

∫ y ′ ′ ′   d x = ∫ e 2 x − c o s x   d x y ′ ′ = 1 2 e 2 x − s i n x + C y ′ = 1 4 e 2 x + c o s x + C x + C 2 y = 1 8 e 2 x + s i n x + C 1 x 2 + C 2 x + C 3   ( C 1 = C 2 ) \int y^{'''} \ dx =\int e^{2x}-cosx \ dx \\ y^{''} = \frac{1}{2}e^{2x} - sinx +C \\ y^{'} = \frac{1}{4}e^{2x}+cosx+Cx+C_2 \\ y = \frac{1}{8}e^{2x}+sinx+C_1x^2+C_2x +C_3 \ (C_1=\frac{C}{2}) y′′′ dx=e2xcosx dxy′′=21e2xsinx+Cy=41e2x+cosx+Cx+C2y=81e2x+sinx+C1x2+C2x+C3 (C1=2C)

2. 求微分方程 ( 1 + x 2 ) y ′ ′ = 2 x y ′ (1+x^2)y^{''}=2xy^{'} (1+x2)y′′=2xy 满足初值条件 y ∣ x = 0 = 1 , y ′ ∣ x = 0 = 3 y|_{x=0}=1,y^{'}|_{x=0}=3 yx=0=1,yx=0=3 的特解

题目对应题型2.

此处设 y ′ = p y^{'}=p y=p ,那么原式就变成 ( 1 + x 2 ) d p d x = 2 x p (1+x^2)\frac{dp}{dx}=2xp (1+x2)dxdp=2xp

d p p = 2 x 1 + x 2   d x \frac{dp}{p} = \frac{2x}{1+x^2} \ dx pdp=1+x22x dx

对两端同时积分再化简可以得到 p = C ( 1 + x 2 ) p=C(1+x^2) p=C(1+x2) ,且 p ∣ x = 0 = 3 p|_{x=0}=3 px=0=3 ,那么可知 C = 3 C=3 C=3

此时即 d y d x = 3 ( 1 + x 2 ) \frac{dy}{dx}=3(1+x^2) dxdy=3(1+x2)

直接积分可以得到 y = 3 x + x 3 + C 1 y=3x+x^3+C_1 y=3x+x3+C1 ,又 y ∣ x = 0 = 1 y|_{x=0}=1 yx=0=1 ,得知 C 1 = 1 C_1=1 C1=1

所以可以得到 y = x 3 + 3 x + 1 y=x^3+3x+1 y=x3+3x+1 为所求特解。

3. 求微分方程 y y ′ ′ − ( y ′ ) 2 = 0 yy^{''}-(y^{'})^2=0 yy′′(y)2=0

题目对应题型3.

同样,我们设 y ′ = p y^{'}=p y=p

那么此时就是解方程

y p ⋅ d p d y − p 2 = 0 yp\cdot\frac{dp}{dy}-p^2=0 ypdydpp2=0

d p p = d y y \frac{dp}{p}=\frac{dy}{y} pdp=ydy

p = C 1 ⋅ y p=C_1\cdot y p=C1y

d y d x = C 1 ⋅ y ⇒ d y y = C 1   d x ⇒ l n ∣ y ∣ = C 1 x + C 2 \frac{dy}{dx}=C_1\cdot y \\ \Rightarrow \frac{dy}{y}=C_1\ dx \\ \Rightarrow ln|y|=C_1x+C_2 dxdy=C1yydy=C1 dxlny=C1x+C2

化简就有 y = C ⋅ e C 1 x y=C\cdot e^{C_1x} y=CeC1x

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值