6. 高阶线性微分方程

6. 高阶线性微分方程

6.1 二阶线性微分方程举例

物体自由振动的微分方程
物体强迫振动的微分方程
串联电路的微分方程

在这里先给出二阶线性微分方程的形式 d 2 y d x + P ( x ) d y d x + Q ( x ) y = f ( x ) \frac{d^2y}{dx}+P(x)\frac{dy}{dx}+Q(x)y=f(x) dxd2y+P(x)dxdy+Q(x)y=f(x)

同样的,对于这个方程,它也有齐次、非齐次之分:

  1. f ( x ) ≡ 0 f(x)\equiv 0 f(x)0 时,方程被称为齐次二阶线性微分方程
  2. f ( x ) f(x) f(x) 不恒等于 0 时,方程就是非齐次二阶线性微分方程

6.2 线性微分方程的解的结构

6.2.1 定理1

如果函数 y 1 ( x ) y_1(x) y1(x) y 2 ( x ) y_2(x) y2(x) 是方程的两个解,那么 y = C 1 y 1 ( x ) + C 2 y 2 ( x ) y=C_1y_1(x)+C_2y_2(x) y=C1y1(x)+C2y2(x) 也是方程的解,其中 C 1 , C 2 C_1,C_2 C1,C2 是任意常数。

6.2.2 定理2

如果函数 y 1 ( x ) y_1(x) y1(x) y 2 ( x ) y_2(x) y2(x) 是方程 y ′ ′ + P ( x ) y ′ + Q ( x ) y = 0 y^{''}+P(x)y^{'}+Q(x)y=0 y′′+P(x)y+Q(x)y=0 的两个线性无关的特解,那么 y = C 1 y 1 ( x ) + C 2 y 2 ( x ) y=C_1y_1(x)+C_2y_2(x) y=C1y1(x)+C2y2(x) 就是方程的通解,其中 C 1 , C 2 C_1,C_2 C1,C2 是任意常数。

6.2.3 定理3

y ∗ ( x ) y^*(x) y(x) 是二阶非齐次方程 y ′ ′ + P ( x ) y ′ + Q ( x ) y = f ( x ) y^{''}+P(x)y^{'}+Q(x)y=f(x) y′′+P(x)y+Q(x)y=f(x) 的一个特解。 Y ( x ) Y(x) Y(x) 是方程对应的齐次方程的通解,那么 y = Y ( x ) + y ∗ ( x ) y=Y(x)+y^*(x) y=Y(x)+y(x) 是上面非齐次方程的通解。

6.2.4 定理4

设二阶非齐次线性方程的右端的函数 f ( x ) f(x) f(x) 是两个函数之和,即 y ′ ′ + P ( x ) y ′ + Q ( x ) y = f 1 ( x ) + f 2 ( x ) y^{''}+P(x)y^{'}+Q(x)y=f_1(x)+f_2(x) y′′+P(x)y+Q(x)y=f1(x)+f2(x),而 y 1 ∗ ( x ) y_1^*(x) y1(x) y 2 ∗ ( x ) y_2^*(x) y2(x) 分别是方程 y ′ ′ + P ( x ) y ′ + Q ( x ) y = f 1 ( x ) y^{''}+P(x)y^{'}+Q(x)y=f_1(x) y′′+P(x)y+Q(x)y=f1(x) y ′ ′ + P ( x ) y ′ + Q ( x ) y = f 2 ( x ) y^{''}+P(x)y^{'}+Q(x)y=f_2(x) y′′+P(x)y+Q(x)y=f2(x) 的特解,则 y 1 ∗ ( x ) + y 2 ∗ ( x ) y_1^*(x)+y_2^*(x) y1(x)+y2(x) 就是原方程的特解。

6.3 常数变易法

通过对之前的常数变易法的了解,貌似不是很好理解。这个方法的特点:如果 C y 1 ( x ) Cy_1(x) Cy1(x) 是齐次线性方程的通解,那么我们就可以变换 y = u y 1 ( x ) y=uy_1(x) y=uy1(x)(其中 u u u 是关于 x x x 的函数)去解相关的非齐次线性方程。接下来用此方法来解二阶非齐次线性方程。

如果已知 y ′ ′ + P ( x ) y ′ + Q ( x ) y = 0 y^{''}+P(x)y^{'}+Q(x)y=0 y′′+P(x)y+Q(x)y=0 的通解为 Y ( x ) = C 1 y 1 ( x ) + C 2 y 2 ( x ) Y(x)=C_1y_1(x)+C_2y_2(x) Y(x)=C1y1(x)+C2y2(x),令 y = y 1 ( x ) v 1 + y 2 ( x ) v 2 y=y_1(x)v_1+y_2(x)v_2 y=y1(x)v1+y2(x)v2,将此式反代,我们可以得到一个关系式,但是这个时候我们还不能确定 v 1 v_1 v1 v 2 v_2 v2,为了确定这两个函数,我们需要再得到一个关系式,那么我们可以考虑通过导数的关系来再确定一个关系式。

y ′ = y 1 v 1 ′ + y 2 v 2 ′ + y 1 ′ v 1 + y 2 ′ v 2 y^{'}=y_1v_1^{'}+y_2v_2^{'}+y_1^{'}v_1+y_2^{'}v_2 y=y1v1+y2v2+y1v1+y2v2,为了不引入 v 1 ′ ′ v_1^{''} v1′′ v 2 ′ ′ v_2^{''} v2′′ 而进一步增大难度,这里令 y 1 v 1 ′ + y 2 v 2 ′ = 0 y_1v_1^{'}+y_2v_2^{'}=0 y1v1+y2v2=0

那么 y ′ = y 1 ′ v 1 + y 2 ′ v 2 y^{'}=y_1^{'}v_1+y_2^{'}v_2 y=y1v1+y2v2 y ′ ′ = y 1 ′ v 1 ′ + y 2 ′ v 2 ′ + y 1 ′ ′ v 1 + y 2 ′ ′ v 2 y^{''}=y_1^{'}v_1^{'}+y_2^{'}v_2^{'}+y_1^{''}v_1+y_2^{''}v_2 y′′=y1v1+y2v2+y1′′v1+y2′′v2

此时将 y , y ′ , y ′ ′ y, y^{'}, y^{''} y,y,y′′ 代入原方程,经过整理容易得到 y 1 ′ v 1 ′ + y 2 ′ v 2 ′ + ( y 1 ′ ′ + P ( x ) y 1 ′ + Q ( x ) y 1 ) v 1 + ( y 2 ′ ′ + P ( x ) y 2 ′ + Q ( x ) y 2 ) v 2 = f ( x ) y_1^{'}v_1^{'}+y_2^{'}v_2^{'}+(y_1^{''}+P(x)y_1^{'}+Q(x)y_1)v_1+(y_2^{''}+P(x)y_2^{'}+Q(x)y_2)v_2=f(x) y1v1+y2v2+(y1′′+P(x)y1+Q(x)y1)v1+(y2′′+P(x)y2+Q(x)y2)v2=f(x)

y 1 y_1 y1 y 2 y_2 y2 是齐次方程的解,那么上面的式子本质上是 y 1 ′ v 1 ′ + y 2 ′ v 2 ′ = f ( x ) y_1^{'}v_1^{'}+y_2^{'}v_2^{'}=f(x) y1v1+y2v2=f(x)

此时可以建立方程组:
{ y 1 v 1 ′ + y 2 v 2 ′ = 0 y 1 ′ v 1 ′ + y 2 ′ v 2 ′ = f ( x ) \begin{cases} y_1v_1^{'}+y_2v_2^{'} =0 \\ y_1^{'}v_1^{'}+y_2^{'}v_2^{'}=f(x) \end{cases} {y1v1+y2v2=0y1v1+y2v2=f(x)
且其系数行列式 ∣ y 1 y 2 y 1 ′ y 2 ′ ∣ ≠ 0 \left|\begin{matrix} y_1 & y_2 \\ y_1^{'} & y_2^{'} \end{matrix}\right| ≠ 0 y1y1y2y2 =0

那么可以解得 v 1 ′ = − y 2 f y 1 y 2 ′ − y 1 ′ y 2 v_1^{'}=-\frac{y_2f}{y_1y_2^{'}-y_1^{'}y_2} v1=y1y2y1y2y2f v 2 ′ = y 1 f y 1 y 2 ′ − y 1 ′ y 2 v_2^{'}=\frac{y_1f}{y_1y_2^{'}-y_1^{'}y_2} v2=y1y2y1y2y1f

对这两个式子积分我们就可以得到 v 1 v_1 v1 v 2 v_2 v2,那么此时非齐次方程的通解就是
y = C 1 y 1 + C 2 y 2 + y 1 ∫ − y 2 f y 1 y 2 ′ − y 1 ′ y 2   d x + y 2 ∫ y 1 f y 1 y 2 ′ − y 1 ′ y 2   d x y=C_1y_1+C_2y_2+y_1\int -\frac{y_2f}{y_1y_2^{'}-y_1^{'}y_2} \ dx+y_2 \int \frac{y_1f}{y_1y_2^{'}-y_1^{'}y_2} \ dx y=C1y1+C2y2+y1y1y2y1y2y2f dx+y2y1y2y1y2y1f dx

6.4 例题

这里给出课本上的例题,让大家来体会一下这个过程。

已知齐次方程 ( x − 1 ) y ′ ′ − x y ′ + y = 0 (x-1)y^{''}-xy{'}+y=0 (x1)y′′xy+y=0 的通解为 Y ( x ) = C 1 x + C 2 e x Y(x)=C_1x+C_2e^x Y(x)=C1x+C2ex,求非齐次方程 ( x − 1 ) y ′ ′ − x y ′ + y = ( x − 1 ) 2 (x-1)y^{''}-xy{'}+y=(x-1)^2 (x1)y′′xy+y=(x1)2 的通解。

首先我们将方程化为标准形式: y ′ ′ − x x − 1 y ′ + 1 x − 1 y = x − 1 y^{''}-\frac{x}{x-1}y^{'}+\frac{1}{x-1}y=x-1 y′′x1xy+x11y=x1

此处令 y = x y 1 + e x y 2 y=xy_1+e^xy_2 y=xy1+exy2

我们按照
{ x y 1 ′ + e x y 2 ′ = 0 y 1 ′ + e x y 2 ′ = x − 1 \begin{cases} xy_1^{'}+e^xy_2^{'}=0 \\ y_1^{'}+e^xy_2^{'}= x-1 \end{cases} {xy1+exy2=0y1+exy2=x1
得到
{ x y 1 ′ + e x y 2 ′ = 0 y 1 ′ + e x y 2 ′ = x − 1 \begin{cases} xy_1^{'}+e^xy_2^{'}=0 \\ y_1^{'}+e^xy_2^{'}= x-1 \end{cases} {xy1+exy2=0y1+exy2=x1

此时可以求出 v 1 ′ = − 1 v_1^{'} =-1 v1=1 v 2 ′ = x e − x v_2^{'}=xe^{-x} v2=xex

积分得到 v 1 = − x + C 1 v_1 = -x+C_1 v1=x+C1 v 2 = − ( x + 1 ) e − x + C 2 v_2=-(x+1)e^{-x}+C_2 v2=(x+1)ex+C2

则所求即为 y = C 1 x + C 2 e x − ( x 2 + x + 1 ) y=C_1x+C_2e^x-(x^2+x+1) y=C1x+C2ex(x2+x+1)

6.5 补充

如果只知 y ′ ′ + P ( x ) y ′ + Q ( x ) y = 0 y^{''}+P(x)y^{'}+Q(x)y=0 y′′+P(x)y+Q(x)y=0 的一个不恒为0的解 y 1 ( x ) y_1(x) y1(x),那么,利用变换 y = u y 1 ( x ) y=uy_1(x) y=uy1(x) u u u 是一个关于 x x x 的函数),就可以把非齐次方程 y ′ ′ + P ( x ) y ′ + Q ( x ) y = f ( x ) y^{''}+P(x)y^{'}+Q(x)y=f(x) y′′+P(x)y+Q(x)y=f(x) 化为一阶线性方程。事实上,把 y = y y 1 , y ′ = y 1 u ′ + y 1 ′ u , y ′ ′ = y 1 u ′ ′ + 2 y 1 ′ u ′ + y 1 ′ ′ u y=yy_1,y^{'}=y_1u^{'}+y_1^{'}u,y^{''}=y_1u^{''}+2y_1^{'}u^{'}+y_1^{''}u y=yy1,y=y1u+y1u,y′′=y1u′′+2y1u+y1′′u 代入上面的非齐次方程,经过整理就有
y 1 u ′ ′ + ( 2 y 1 ′ + P y 1 ) u ′ + ( y 1 ′ ′ + P y 1 ′ + Q y 1 ) u = f y_1u^{''}+(2y_1^{'}+Py_1)u^{'}+(y_1^{''}+Py_1^{'}+Qy_1)u=f y1u′′+(2y1+Py1)u+(y1′′+Py1+Qy1)u=f
其中 y 1 ′ ′ + P y 1 ′ + Q y 1 = 0 y_1^{''}+Py_1^{'}+Qy_1=0 y1′′+Py1+Qy1=0,那么式子就变为 y 1 u ′ ′ + ( 2 y 1 ′ + P y 1 ) u ′ = f y_1u^{''}+(2y_1^{'}+Py_1)u^{'}=f y1u′′+(2y1+Py1)u=f

我们可以令 u ′ = z u^{'}=z u=z,此时方程变为一阶线性微分方程: y 1 z ′ + ( 2 y 1 ′ + P y 1 ) z = f y_1z^{'}+(2y_1^{'}+Py_1)z=f y1z+(2y1+Py1)z=f

此时用解决一阶线性微分方程的方法得到通解即可。

不妨设此时我们得到的通解为 z = C 2 Z ( x ) + z ∗ ( x ) z=C_2Z(x)+z^{*}(x) z=C2Z(x)+z(x)

得到 u = C 1 + C 2 U ( x ) + u ∗ ( x ) u=C_1+C_2U(x)+u^{*}(x) u=C1+C2U(x)+u(x),其中 U ′ ( x ) = Z ( x ) , u ∗ ′ ( x ) = z ∗ ( x ) U^{'}(x)=Z(x),u^{*'}(x)=z^{*}(x) U(x)=Z(x),u(x)=z(x)

两端同乘 y 1 ( x ) y_1(x) y1(x) 就得到 y ′ ′ + P ( x ) y ′ + Q ( x ) y = f ( x ) y^{''}+P(x)y^{'}+Q(x)y=f(x) y′′+P(x)y+Q(x)y=f(x) 的通解:
y = C 1 y 1 ( x ) + C 2 U ( x ) y 1 ( x ) + u ∗ ( x ) y 1 ( x ) y=C_1y_1(x)+C_2U(x)y_1(x)+u^{*}(x)y_1(x) y=C1y1(x)+C2U(x)y1(x)+u(x)y1(x)

上述方法显然也适用于求 y ′ ′ + P ( x ) y ′ + Q ( x ) y = 0 y^{''}+P(x)y^{'}+Q(x)y=0 y′′+P(x)y+Q(x)y=0 的通解。

同样这里我们给出课本上的一个例题:

已知 y 1 ( x ) = e x y_1(x)=e^{x} y1(x)=ex 是齐次方程 y ′ ′ − 2 y ′ + y = 0 y^{''}-2y^{'}+y=0 y′′2y+y=0 的解,求非齐次方程 y ′ ′ − 2 y ′ + y = 1 x e x y^{''}-2y^{'}+y=\frac{1}{x}e^x y′′2y+y=x1ex 的通解。

此时令 y = e x u y=e^xu y=exu,则有 y ′ = e x ( u ′ + u ) y^{'}=e^x(u^{'}+u) y=ex(u+u) y ′ ′ = e x ( u ′ ′ + 2 u ′ + u ) y^{''}=e^x(u^{''}+2u^{'} +u) y′′=ex(u′′+2u+u)

代入非齐次方程中,得到 e x ( u ′ ′ + 2 u ′ + u ) − 2 e x ( u ′ + u ) + e x u = 1 x e x e^x(u^{''}+2u^{'}+u)-2e^x(u^{'}+u)+e^xu=\frac{1}{x}e^x ex(u′′+2u+u)2ex(u+u)+exu=x1ex

整理化简得到 e x u ′ ′ = 1 x e x e^xu^{''}=\frac{1}{x}e^x exu′′=x1ex

得到 u ′ ′ = 1 x u^{''}=\frac{1}{x} u′′=x1

积分得到 u ′ = C + ln ⁡ ∣ x ∣ u^{'}=C+\ln|x| u=C+lnx

u = C 1 + C x + x ln ⁡ ∣ x ∣ − x u=C_1+Cx+x\ln|x|-x u=C1+Cx+xlnxx

发现可以合并,则 u = C 1 + C 2 x + x ln ⁡ ∣ x ∣ u=C_1+C_2x+x\ln|x| u=C1+C2x+xlnx, ( C 2 = C − 1 C_2=C-1 C2=C1)。

那么所求通解就是 y = C 1 e x + C 2 x e x + x e x ln ⁡ ∣ x ∣ y=C_1e^x+C_2xe^x+xe^x\ln|x| y=C1ex+C2xex+xexlnx

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值