✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
现代交通系统的飞速发展对车辆智能化提出了更高的要求,其中自适应巡航控制(Adaptive Cruise Control, ACC)作为实现高级驾驶辅助系统(ADAS)和未来自动驾驶的关键技术之一,正受到广泛关注。传统的定速巡航系统仅能维持设定速度,无法应对前方车辆的速度变化,而ACC系统通过感知前方障碍物(通常是车辆),能够自动调整自身速度,保持安全的车距,显著提升了驾驶的舒适性和安全性。
在ACC系统的设计中,控制策略是核心问题。目前主流的控制方法包括比例-积分-微分(PID)控制、模糊控制、模型预测控制(MPC)等。其中,基于模型的控制方法,尤其是模型预测控制,因其能够 explicitly 处理系统约束、预测系统未来行为并进行最优控制,在复杂动态环境下展现出优越的性能。本文将聚焦基于预测控制模型的自适应巡航控制,深入探讨其理论基础、仿真实现以及在机器人平台上的应用潜力。
第一章 基于预测控制模型的自适应巡航控制理论基础
1.1 自适应巡航控制系统概述
自适应巡航控制系统通常由以下几个主要模块组成:
- 感知模块:
利用传感器(如雷达、激光雷达、摄像头等)获取前方环境信息,包括前方车辆的位置、速度、加速度等。
- 决策模块:
根据感知信息和预设的控制策略,判断当前的工作模式(速度控制模式或距离控制模式),并设定目标速度和目标距离。
- 控制模块:
根据决策模块设定的目标和车辆自身的状态,生成控制指令(如油门开度、刹车压力)来调节车辆的纵向速度。
- 执行模块:
将控制指令转化为车辆的实际动作。
ACC系统的核心目标是在保证安全的前提下,最大化舒适性和燃油经济性。安全性主要体现在保持与前方车辆的安全距离,避免追尾事故。舒适性则体现在加减速过程的平稳性。燃油经济性则需要在满足安全和舒适性的前提下,尽量减少不必要的加速和减速。
1.2 模型预测控制(MPC)原理
模型预测控制是一种基于模型的优化控制方法。其基本思想是:在每个控制时刻,根据当前系统的状态,利用系统模型预测系统在未来一段时间内的行为,并通过优化算法计算出一系列最优控制输入。然而,实际应用中只执行第一个最优控制输入,然后在下一个控制时刻重新进行预测和优化。这种滚动优化的过程使得MPC能够有效地处理非线性系统、约束条件以及延迟等问题。
MPC的核心组成部分包括:
- 预测模型:
描述系统动态行为的数学模型。对于车辆纵向控制,通常采用简化的车辆动力学模型或运动学模型。
- 目标函数:
定义了需要优化的目标,通常包括跟踪目标速度、保持目标距离、最小化控制输入变化率、最小化舒适度指标等。
- 约束条件:
包括车辆的物理约束(如最大加减速度、最大速度、油门和刹车的限制)以及安全约束(如最小安全距离)。
- 优化算法:
用于求解目标函数在约束条件下的最优控制输入序列。
1.3 基于MPC的ACC控制模型构建
将MPC应用于ACC系统,需要构建合适的预测模型、定义合理的目标函数和约束条件。
-
预测模型: 可以采用简化的车辆纵向动力学模型,如一阶或二阶模型,描述车辆速度和加速度之间的关系。更复杂的模型可以考虑发动机、传动系统和制动系统的动态特性。
第二章 自适应巡航控制的仿真实现
仿真平台是验证控制算法性能和进行参数调优的有效工具。本章将探讨基于MPC的ACC控制算法的仿真实现过程。
2.1 仿真平台选择与环境搭建
ACC系统的仿真可以在多种平台下进行,常用的仿真软件包括:
- MATLAB/Simulink:
功能强大且易于使用的仿真平台,提供丰富的工具箱,如MPC Toolbox,可以方便地构建模型、设计控制器和进行仿真。
- CarSim/TruckSim:
专业级的车辆动力学仿真软件,能够提供高精度的车辆模型和复杂的驾驶场景。
- Prescan/Vires VTD:
专业的ADAS/AD仿真平台,提供详细的环境建模、传感器模型和交通流模型,适合进行复杂的场景仿真。
- 自研仿真平台:
根据具体需求开发定制化的仿真环境。
选择合适的仿真平台取决于研究的深度和所需的仿真精度。对于控制算法的初步验证和参数调优,MATLAB/Simulink通常是一个不错的选择。
在仿真环境中,需要建立以下模型:
- 车辆动力学模型:
描述ACC车辆的纵向运动。可以采用简化的运动学模型或更复杂的动力学模型。
- 前方车辆模型:
模拟前方车辆的运动轨迹和速度变化,可以采用恒速模型、恒加速度模型或预设的驾驶工况。
- 传感器模型:
模拟ACC车辆的感知系统,获取与前方车辆的相对距离和相对速度。简化的传感器模型可以假设理想测量,更复杂的模型可以考虑测量噪声和延迟。
- 交通环境模型:
模拟车道、道路曲率、障碍物等环境因素,虽然对于纵向ACC来说,横向环境因素影响较小,但对于更全面的ADAS仿真则不可或缺。
2.2 基于MPC的ACC仿真模型构建与参数设置
在选定的仿真平台中,根据第一章构建的MPC控制模型,搭建仿真模型。
- 车辆模型:
实现车辆纵向动力学方程,输入为加速度指令,输出为车辆速度和位置。
- 前方车辆模型:
根据预设的工况或随机生成前方车辆的运动。
- 感知模型:
根据ACC车辆和前方车辆的位置,计算相对距离和相对速度。
- MPC控制器模块:
实现MPC算法。输入为当前车辆状态(速度、与前方车辆的距离、前方车辆速度等),输出为控制指令(车辆加速度)。该模块内部包含预测模型、目标函数和约束条件,并通过优化算法求解最优控制序列。
- 执行器模型:
将加速度指令转化为实际的油门和刹车控制信号。可以采用简化的模型,假设控制指令能够直接转化为加速度。
2.3 仿真场景设计与结果分析
为了全面评估基于MPC的ACC控制性能,需要设计多种仿真场景,包括:
- 跟车场景:
模拟ACC车辆跟随前方车辆,前方车辆进行加速、减速、匀速等运动。
- 切入场景:
模拟前方有车辆切入ACC车辆前方。
- 切出场景:
模拟前方车辆切出ACC车辆前方。
- 目标速度切换场景:
模拟驾驶员改变设定的目标速度。
- 紧急刹车场景:
模拟前方车辆紧急刹车。
对于每个仿真场景,需要记录和分析关键性能指标,包括:
- 速度跟踪性能:
ACC车辆速度对目标速度的跟踪效果。
- 距离保持性能:
ACC车辆与前方车辆距离对目标距离的跟踪效果,尤其是在不同速度和加减速工况下。
- 舒适性:
加速度的变化率(jerk),衡量加减速过程的平稳性。
- 安全性:
是否保持了足够的安全距离,避免了碰撞。
- 控制输入:
油门和刹车指令的变化是否合理。
通过对不同场景下仿真结果的对比分析,可以评估MPC控制器的性能,并根据结果调整参数,优化控制策略。
第三章 自适应巡航控制的机器人实现
将仿真验证成功的ACC控制算法部署到实际机器人平台是验证其可行性和鲁棒性的重要步骤。本章将探讨ACC控制在机器人上的实现。
3.1 机器人平台选择与硬件集成
机器人平台可以是改造后的真车,也可以是 специально设计的移动机器人。选择合适的平台取决于研究目标和资源。
- 改造车辆:
将ACC传感器、计算平台和执行机构(油门、刹车、转向)集成到一辆真实车辆上。这种方式最能反映真实世界的挑战,但成本较高,且需要满足车辆安全和法规要求。
- 移动机器人:
使用配备传感器和计算能力的移动机器人,模拟ACC系统的功能。例如,可以使用ROS(Robot Operating System)框架下的差分轮机器人或阿克曼转向机器人,搭载激光雷达、摄像头等传感器,以及Nvidia Jetson或工控机作为计算平台。
硬件集成是实现ACC的关键。需要将传感器数据准确可靠地传输到计算平台,并将计算平台输出的控制指令有效作用于车辆的执行机构。这涉及到硬件接口设计、驱动程序开发和数据同步等问题。
3.2 传感器数据处理与环境感知
在机器人平台上,需要对原始传感器数据进行处理,提取有用的环境信息。
- 雷达/激光雷达数据处理:
进行点云滤波、聚类、目标检测和跟踪,识别前方车辆并估计其位置、速度和尺寸。
- 摄像头数据处理:
利用图像处理和计算机视觉技术进行目标检测、跟踪、车道线检测等。
为了提高感知鲁棒性,通常会采用多传感器融合技术,结合不同传感器的优势,提高环境感知的精度和可靠性。
3.3 控制算法部署与实时性考虑
将仿真验证过的MPC控制算法部署到机器人平台的计算平台上。这涉及到以下问题:
- 算法实现语言和框架:
通常使用C++、Python等语言实现控制算法,并结合ROS等机器人软件框架进行系统集成。
- 实时性要求:
ACC系统需要具备较高的实时性,以应对动态变化的交通环境。因此,控制算法的计算需要在规定的控制周期内完成。MPC算法的计算量相对较大,需要优化算法的实现或者选择计算能力强的硬件平台。
- 数值稳定性:
MPC优化问题的求解可能存在数值稳定性问题,需要选择合适的优化算法和参数设置。
3.4 机器人平台上的ACC实验与结果分析
在机器人平台上进行ACC实验,验证控制算法在真实物理环境下的性能。实验场景设计应与仿真场景相对应,并考虑真实世界的随机性和不确定性。
实验过程中需要记录和分析实际的车辆运行数据,包括:
- 实际速度和加速度:
衡量控制器的响应性能。
- 实际距离和相对速度:
衡量跟车性能和安全性。
- 控制输入:
油门和刹车的实际输出。
- 传感器数据:
验证感知系统的性能。
通过对比仿真结果和实际实验结果,分析算法在真实环境下的表现,找出可能存在的问题(如传感器噪声、执行器延迟、模型不匹配等),并进行相应的改进和调优。
结论
基于预测控制模型的自适应巡航控制是一种先进的车辆纵向控制策略,其通过预测系统未来行为并进行最优控制,能够有效处理约束条件,在复杂动态环境下展现出优越的性能。本文系统地探讨了基于MPC的ACC控制的理论基础、仿真实现和机器人实现。
仿真结果表明,基于MPC的ACC系统能够在多种典型场景下实现良好的速度跟踪和距离保持性能,并具备较高的舒适性和安全性。机器人平台上的实现则进一步验证了算法在真实物理环境下的可行性和鲁棒性,但也面临着传感器噪声、执行器延迟、实时性要求等实际挑战。
未来的研究方向可以包括:
- 更精确的车辆动力学模型:
考虑轮胎、悬架等更详细的动力学特性,提高控制精度。
- 非线性MPC的应用:
考虑车辆动力学的非线性特性,进一步提升控制性能。
- 鲁棒MPC设计:
考虑传感器噪声、模型不确定性等因素,提高控制系统的鲁棒性。
- 结合路径规划和横向控制:
将ACC系统与路径规划和横向控制相结合,实现更高级的自动驾驶功能。
- 基于学习的MPC:
结合机器学习方法,提高MPC对复杂交通环境的适应性。
- 多车协同ACC:
研究车辆之间的信息交互和协同控制,提升交通流效率和安全性。
⛳️ 运行结果
🔗 参考文献
[1] 孙涛,夏维,李道飞.基于模型预测控制的协同式自适应巡航控制系统[J].中国机械工程, 2017, 28(4):6.DOI:10.3969/j.issn.1004-132X.2017.04.018.
[2] 胡吉.基于MPC算法的混合动力汽车自适应巡航控制研究[D].重庆大学,2015.
[3] 和丽阳,冯剑波,王衍学,等.基于MPC及改进ADRC的车辆自适应巡航控制研究[J].现代制造工程, 2024(8):95-101.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇