MATLAB主动噪声和振动控制算法——对较大的次级路径变化具有鲁棒性附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

主动噪声和振动控制(ANC/AVC)技术作为一种有效的降噪和减振手段,近年来受到广泛关注。然而,实际应用中,ANC/AVC系统面临着次级路径(即控制输出到期望控制点之间的声学或机械传递路径)参数变化的问题。这些变化可能是由环境因素、系统老化或被控对象状态改变引起的,并可能导致控制性能下降甚至系统不稳定。本文深入探讨了基于MATLAB实现的ANC/AVC算法在应对较大次级路径变化时的鲁棒性问题。首先,分析了次级路径变化对传统自适应滤波算法(如FXLMS算法)性能的影响。接着,阐述了几种提升算法鲁棒性的策略,包括基于在线次级路径建模的自适应算法、鲁棒自适应滤波算法以及基于模型的控制方法。最后,展望了未来在提升ANC/AVC系统对次级路径变化鲁棒性方面的研究方向。

引言

噪声和振动是现代工业和生活中普遍存在的问题,对人类健康和工作效率产生负面影响。传统的被动降噪和减振方法,如隔音、吸音和隔振,通常在宽频带范围内效果有限,尤其在低频段。主动噪声和振动控制(ANC/AVC)技术通过产生与原始噪声/振动信号反相的抵消信号,从而在期望控制点实现噪声/振动的抑制,为解决这一难题提供了新的途径。

ANC/AVC系统的核心是自适应控制算法,它根据误差信号实时调整控制输出。目前,基于自适应滤波器的控制方法,特别是基于FXLMS(Filtered-x Least Mean Square)算法及其变种,是ANC/AVC领域的主流。FXLMS算法通过对参考信号进行次级路径模型的滤波后与误差信号进行相关运算,更新控制滤波器的系数,从而最小化误差信号的均方值。

然而,实际应用场景下的次级路径通常并非恒定不变。温度、湿度、气压、环境物体的位置变化,甚至被控对象的载荷或姿态改变,都可能导致次级路径的幅度和相位特性发生显著变化。对于依赖于精确次级路径模型的FXLMS算法而言,这些变化将直接影响其收敛速度、稳态误差甚至系统稳定性。当次级路径变化较大时,传统FXLMS算法的性能会急剧下降,甚至失效。因此,研究对较大次级路径变化具有鲁棒性的ANC/AVC算法具有重要的理论和实际意义。

本文以MATLAB作为算法实现和仿真的平台,探讨ANC/AVC算法应对较大次级路径变化的鲁棒性问题。MATLAB凭借其强大的数值计算、信号处理和控制系统工具箱,为ANC/AVC算法的研究、开发和验证提供了便捷高效的环境。本文将基于MATLAB的仿真和分析,深入剖析次级路径变化带来的挑战,并探讨提升算法鲁棒性的各种策略。

1. 次级路径变化对传统FXLMS算法性能的影响

  • 收敛速度降低:

     不准确的滤波参考信号使得梯度估计不够准确,从而减缓了算法的收敛速度。

  • 稳态误差增大:

     即使算法收敛,由于次级路径模型的误差,控制输出无法完全抵消期望信号,导致残余误差增大。

  • 稳定性下降甚至失稳:

     当次级路径变化较大时,尤其是相位变化,可能导致算法收敛方向错误,甚至引起系统振荡,最终导致系统失稳。

在MATLAB环境中,可以通过构建不同的次级路径模型,并进行FXLMS算法的仿真来直观地观察次级路径变化带来的影响。例如,可以模拟一个具有时变特性的次级路径,观察算法在不同时刻的收敛曲线和稳态误差。仿真结果将清晰地展示出,随着实际次级路径与估计模型的差异增大,FXLMS算法的性能会显著恶化。

2. 提升算法鲁棒性的策略

为了应对次级路径的变化,研究者们提出了多种提升ANC/AVC算法鲁棒性的策略。这些策略主要可以分为以下几类:

2.1. 基于在线次级路径建模的自适应算法

这类方法的核心思想是在控制过程中同时对次级路径进行在线估计。

  • 同时自适应算法 (Simultaneous Adaptive Algorithm):

     这类算法在控制滤波器自适应的同时,利用辅助参考信号或系统输入输出信号对次级路径进行估计。例如,经典的Filtered-x NLMS(FxNLMS)算法可以通过引入一个并行的次级路径估计滤波器来实现。在MATLAB中,可以方便地构建包含主控制通路和次级路径估计通路的仿真模型。

  • 开关式次级路径估计 (Switching Secondary Path Estimation):

     当次级路径变化发生时,算法可以切换到次级路径估计模式,在短时间内快速更新次级路径模型,然后切换回控制模式。这种方法适用于次级路径发生突变的情况。

基于在线次级路径建模的算法能够有效地跟踪缓慢或中等程度的次级路径变化。然而,当次级路径变化速度较快或变化幅度较大时,次级路径估计的精度会受到影响,进而影响控制性能。同时,在线次级路径估计本身也可能引入额外的计算开销和稳定性问题。

2.2. 鲁棒自适应滤波算法

这类方法通过改进自适应滤波算法的更新规则,使其对次级路径模型误差具有一定的容忍度。

  • 基于鲁棒代价函数的算法:

     传统的FXLMS算法最小化误差信号的均方值,容易受到异常误差或模型误差的影响。可以采用其他鲁棒的代价函数,如最小均方误差的变种(例如,加权最小二乘法)或基于L1范数的代价函数,来降低次级路径模型误差对算法收敛的影响。

  • 基于鲁oboost步长的算法:

     设计一个具有鲁棒性的步长控制策略,使得当次级路径模型误差较大时,步长减小,以避免系统不稳定;当模型误差较小时,步长增大,以提高收敛速度。

  • 基于模型不确定性的鲁棒滤波:

     考虑次级路径模型的估计误差作为一种不确定性,设计鲁棒的自适应滤波器。例如,基于H-无穷控制理论或滑动模态控制思想的自适应滤波器,可以在存在模型不确定性的情况下保证系统的稳定性。

这些鲁棒自适应滤波算法通常通过引入额外的约束或调整算法参数来增强其鲁棒性。在MATLAB中,可以利用优化工具箱或控制系统工具箱实现这些鲁棒算法。

2.3. 基于模型的控制方法

与自适应滤波算法不同,基于模型的控制方法直接利用一个已知的或在线估计的系统模型来设计控制器。当将这类方法应用于ANC/AVC时,可以显式地将次级路径模型纳入控制器设计中。

  • 模型预测控制 (Model Predictive Control, MPC):

     MPC利用当前时刻的系统状态和预测模型,在未来一段时间内优化控制输入序列,以最小化一个代价函数。在ANC/AVC中,可以将次级路径模型作为预测模型的一部分,并在优化过程中考虑次级路径的不确定性。MPC能够处理约束和非线性系统,并且在应对模型不确定性方面具有一定的鲁棒性。然而,MPC通常计算量较大,实时实现可能具有挑战性。

  • 基于模型的鲁棒控制:

     利用鲁棒控制理论(如H-无穷控制、滑模控制)设计控制器,以确保系统在存在次级路径模型不确定性时仍然稳定并保持一定的性能。这些方法需要建立次级路径模型的数学描述,并分析其不确定性范围。

基于模型的控制方法能够更直接地应对次级路径变化,但其性能很大程度上取决于模型的准确性以及模型不确定性的描述。在MATLAB中,控制系统工具箱和鲁棒控制工具箱提供了实现这些方法的丰富功能。

3. 展望

尽管已经取得了一定的进展,但提升ANC/AVC算法对较大次级路径变化的鲁棒性仍然是一个活跃的研究领域。未来的研究方向可能包括:

  • 更精确和高效的在线次级路径估计:

     研究能够快速、准确地估计次级路径变化的算法,尤其是在存在强耦合或噪声的情况下。

  • 基于机器学习的鲁棒控制:

     利用深度学习或其他机器学习技术,学习次级路径的变化规律,并设计更具适应性和鲁棒性的控制器。例如,可以利用神经网络模型来预测次级路径的变化,或直接设计基于神经网络的鲁棒控制律。

  • 多通道ANC/AVC系统的鲁棒性:

     对于多通道系统,次级路径之间的耦合效应更加复杂,如何设计对次级路径变化具有鲁棒性的多通道控制算法是一个重要的研究方向。

  • 基于物理模型的鲁棒控制:

     结合系统的物理特性,建立更精确的次级路径模型,并基于物理模型的不确定性设计鲁棒控制器。

  • 实际应用中的算法验证:

     将MATLAB中设计的算法应用于实际的ANC/AVC系统,并在真实的噪声/振动环境下验证其鲁棒性,进一步改进和优化算法。

结论

次级路径变化是ANC/AVC系统在实际应用中面临的一个重要挑战。传统FXLMS算法对较大的次级路径变化表现出较低的鲁棒性,可能导致控制性能下降甚至系统失稳。为了解决这一问题,研究者们提出了基于在线次级路径建模、鲁棒自适应滤波以及基于模型的控制等多种策略。MATLAB作为强大的仿真和开发平台,为这些算法的研究和验证提供了便利。

未来的研究将继续探索更精确、高效和智能的算法,以提升ANC/AVC系统在复杂动态环境下的鲁棒性。随着技术的不断发展,我们有理由相信,具备更强鲁棒性的ANC/AVC系统将在更多领域得到广泛应用,为降低噪声和振动污染做出更大的贡献。

⛳️ 运行结果

🔗 参考文献

[1] 段江浩.电动汽车动力传动系统噪声主动控制技术研究[D].吉林大学[2025-05-03].DOI:CNKI:CDMD:2.1018.218117.

[2] 澳 汉森 C.H,澳 斯奈德 S.D.噪声和振动的主动控制[M].科学出版社,2002.

[3] 王建宏,王道波.子空间预测控制算法在主动噪声振动中的应用[J].振动与冲击, 2011, 30(10):7.DOI:10.3969/j.issn.1000-3835.2011.10.025.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值