一种利用并网变流器获得最大允许电网支持的分析方法[MAS技术 变流器电网支座分析优化]附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

随着可再生能源发电的快速发展和电力系统结构的日益复杂,并网变流器在保障电力系统安全稳定运行中扮演着越来越重要的角色。传统上,并网变流器主要被视为将直流电转换为交流电并注入电网的设备,其电网支撑能力常被视为一种附加功能。然而,为了应对现代电力系统面临的挑战,如弱电网、高渗透率新能源带来的惯量不足、电压和频率波动等问题,最大化利用并网变流器的电网支撑能力显得尤为重要。本文旨在深入探讨一种分析方法,用于评估和优化并网变流器所能提供的最大允许电网支持,并提出“MAS技术”(Maximum Allowed Grid Support Analysis)概念,从理论和实践层面分析如何通过变流器电网支座分析与优化来实现这一目标。

关键词: 并网变流器;电网支撑;弱电网;MAS技术;变流器控制;稳定性分析;电网阻抗;功率同步控制

1. 引言

全球范围内对可持续能源的需求不断增长,推动了风能、太阳能等可再生能源的广泛并网。这些新能源发电单元通常通过并网变流器与电力系统相连。与传统的同步发电机相比,基于变流器的新能源发电单元缺少物理惯量,对电网电压和频率波动的抵抗能力较弱,这在一定程度上增加了电网的脆弱性,尤其是在电网强度较低或新能源渗透率较高的区域[1, 2]。为了维持电网的稳定运行,迫切需要并网变流器从简单的功率注入功能向主动提供电网支撑能力转变。

并网变流器所能提供的电网支撑能力多种多样,包括但不限于电压支撑、频率支撑、惯量支撑、暂态故障穿越能力以及抑制电网谐波等。然而,变流器所能提供的电网支撑能力并非无限的,它受到变流器自身的容量限制、控制策略、电网条件以及保护装置等多种因素的制约[3]。如何在这些约束条件下,系统地评估和最大化利用并网变流器所允许提供的电网支持,是当前电力系统领域面临的重要挑战。

本文提出一种分析方法,称之为“MAS技术”(Maximum Allowed Grid Support Analysis),旨在系统地分析和确定并网变流器所能提供的最大允许电网支持。该方法不仅考虑了变流器自身的物理限制,更重要的是,它将电网条件、控制策略以及变流器与电网的相互作用纳入考量,以期为变流器控制策略的设计和电网规划提供理论指导,从而最大限度地提升电网的稳定性和鲁棒性。

2. MAS技术的基本原理与框架

MAS技术的核心思想是通过建立并网变流器与电网相互作用的模型,分析变流器在不同运行状态和电网条件下的稳定性裕度,从而确定其能够提供的最大允许电网支撑能力。图1描绘了MAS技术的总体框架。

框架主要包含以下几个关键模块:

  • 并网变流器模型:

     建立精确的变流器模型是分析的基础。这包括变流器的电气拓扑、开关模型(或平均模型)、直流侧特性以及交流侧滤波器等[4]。

  • 控制策略:

     变流器的控制策略直接影响其电网支撑能力。常见的控制策略包括基于锁相环(PLL)的电流控制、电压控制、虚拟同步机控制(VSG)等[5]。MAS技术需要对不同的控制策略进行建模和分析。

  • 电网模型:

     考虑到电网阻抗、网络拓扑以及其他连接的电源等因素,建立能够反映电网动态特性的模型至关重要[6]。尤其是在弱电网条件下,电网阻抗具有显著影响。

  • MAS分析模块:

     这是MAS技术的核心。该模块通过对变流器与电网组成的系统进行稳定性分析,确定在给定电网条件下,变流器能够提供的最大允许电网支撑能力。

  • 稳定性分析与优化:

     采用多种稳定性分析方法,如小信号稳定性分析、大扰动稳定性分析、阻抗分析等,评估系统的稳定性裕度[7, 8]。基于稳定性分析结果,对变流器控制参数进行优化,以最大化其电网支撑能力。

  • 最大允许电网支持:

     分析结果输出变流器在当前电网条件下能够提供的最大允许电网支撑能力,这可以以电压支撑能力(例如,在一定电压跌落下提供的无功电流)、频率支撑能力(例如,在一定频率变化率下提供的有功功率)或者虚拟惯量大小等形式体现。

3. MAS技术中的关键分析方法

MAS技术综合运用多种分析方法,以全面评估变流器的电网支撑能力。以下是一些关键的分析方法:

3.1 小信号稳定性分析

小信号稳定性分析是一种常用的方法,用于评估系统在微小扰动下的稳定性。通过对变流器和电网的非线性模型在工作点附近进行线性化,得到系统的状态空间模型[9]。通过分析系统特征根的实部,可以判断系统的稳定性。若所有特征根的实部均为负,则系统在工作点附近是稳定的。

在MAS技术中,小信号稳定性分析可以用于评估变流器在提供不同程度的电网支撑(例如,注入不同大小的无功电流)时的稳定性。通过改变变流器控制参数或模拟不同的电网条件(如电网阻抗),可以分析系统特征根的变化轨迹,从而确定变流器在不失稳的前提下能够提供的最大支撑能力。

3.2 阻抗分析

阻抗分析是另一种重要的稳定性评估方法,尤其适用于变流器与电网组成的系统[8]。该方法将变流器视为一个等效的电流源或电压源,通过测量或计算变流器在特定频率范围内的输出阻抗和电网在连接点处的等效阻抗。系统稳定性可以通过分析变流器输出阻抗和电网阻抗的乘积(或比值)来评估,例如采用奈奎斯特判据。

MAS技术利用阻抗分析来评估不同控制策略下变流器的输出阻抗特性,以及不同电网条件下的电网阻抗。通过对不同运行工况下的阻抗进行匹配分析,可以识别潜在的谐振点或不稳定模式,进而确定变流器在不引起谐振或失稳的前提下能够提供的最大支撑能力。例如,在弱电网条件下,电网阻抗较高,变流器输出阻抗需要精心设计以避免系统不稳定。

3.3 大扰动稳定性分析

小信号稳定性分析只能反映系统在微小扰动下的行为,而电力系统常常面临大规模故障或扰动。大扰动稳定性分析则用于评估系统在遭受较大扰动(如短路故障、线路跳闸等)时的稳定性,例如采用基于时间域仿真的方法[10]。通过在仿真中模拟各种故障场景,观察变流器的响应以及系统的整体行为,可以评估变流器在故障穿越过程中提供的支撑能力。

MAS技术通过大扰动稳定性分析,能够确定变流器在特定故障类型和程度上所能提供的最大允许电压支撑和有功功率支撑。例如,在发生对称或不对称故障时,分析变流器在低电压穿越(LVRT)或高电压穿越(HVRT)过程中能够注入的最大无功电流或限制的最大有功功率,同时保证系统不发生功角失稳或电压崩溃。

3.4 考虑变流器自身约束的优化

除了系统稳定性,变流器自身的物理约束(如电流限制、电压限制、开关频率限制等)也对其电网支撑能力构成限制。MAS技术在分析过程中必须考虑这些约束。例如,变流器的过流能力限制了其在故障期间能够注入的无功电流大小。

优化是MAS技术的重要组成部分。基于稳定性分析结果和变流器自身约束,可以采用优化算法来确定变流器控制参数的最佳设置,以最大化其电网支撑能力。例如,可以通过调整虚拟阻抗控制参数、频率下垂系数、电压下垂系数等,在满足稳定性要求的前提下,提高变流器在弱电网中的电压支撑能力或在频率波动时的频率响应能力。常用的优化算法包括遗传算法、粒子群算法等[11]。

4. 变流器电网支座分析与优化

“变流器电网支座分析与优化”是MAS技术在具体应用中的体现。它强调从并网变流器的角度出发,分析其与电网之间的相互作用,并优化变流器的控制策略,使其能够更好地支撑电网。这包含了对以下几个方面的深入研究:

4.1 弱电网下的支撑能力分析

弱电网是当前新能源并网面临的主要挑战之一。弱电网的特点是电网阻抗高,对电压和频率变化的抵抗能力弱。在弱电网条件下,传统的基于PLL的电流控制变流器容易出现稳定性问题。VSG控制由于模拟了同步发电机的惯性和阻尼特性,在弱电网下表现出更好的稳定性[5]。

MAS技术在弱电网条件下进行支座分析,重点关注变流器控制策略对系统稳定性的影响,并通过优化控制参数来增强变流器的支撑能力。例如,分析在不同短路比(SCR)下的系统稳定性,确定变流器在低SCR条件下能够提供的最大电压支撑电流或虚拟惯量大小。同时,研究并优化变流器的虚拟阻抗控制参数,以提高其在弱电网下的并网稳定性。

4.2 不同电网支撑功能的耦合分析

并网变流器可以提供多种电网支撑功能,这些功能之间可能存在耦合效应。例如,电压支撑(无功电流注入)会影响系统的有功潮流,而频率支撑(有功功率调节)也会对电压产生影响。MAS技术需要分析不同支撑功能之间的相互作用,避免由于功能耦合导致的系统不稳定。

在支座优化过程中,需要综合考虑不同支撑功能的需求和约束。例如,在发生电压跌落和频率下降同时发生时,变流器需要同时提供无功电流和有功功率。分析在不同运行工况下,如何协调变流器的电压和频率支撑控制,使其在满足各自功能要求的同时,保持系统的整体稳定性。

4.3 先进控制策略下的支座优化

随着控制理论的发展,出现了许多先进的变流器控制策略,如虚拟同步机控制(VSG)、下垂控制(Droop Control)、无锁相环控制(PLL-less Control)等[5, 12]。这些控制策略具有不同的电网支撑特性。MAS技术可以用于评估和优化这些先进控制策略下的变流器电网支座能力。

例如,对于VSG控制,通过调整虚拟惯量和阻尼参数,可以改变变流器的惯量支撑和频率响应特性。MAS技术可以分析不同参数设置对系统频率稳定性的影响,并优化参数以最大化变流器在频率波动时的有功功率响应能力。对于下垂控制,通过调整下垂系数,可以改变变流器的电压和频率支撑特性。MAS技术可以分析不同下垂系数对系统电压和频率稳定性的影响,并优化系数以提高变流器在不同工况下的支撑能力。

4.4 与电网规划和运行的协同

MAS技术的分析结果不仅有助于变流器控制策略的设计,还可以为电网规划和运行提供重要参考。通过了解并网变流器在不同电网条件下的最大允许支撑能力,电网规划者可以更准确地评估新能源发电单元对电网的贡献和影响,优化电网结构和容量配置。电网运行人员也可以根据MAS技术的分析结果,调整变流器的运行模式和控制参数,以应对实时的电网运行挑战。

例如,在电网出现故障或运行条件恶化时,可以根据MAS技术的分析结果,调整变流器的控制模式,使其从正常的功率注入模式切换到增强电网支撑模式,从而提高电网的暂态稳定性或恢复能力。

5. MAS技术的应用前景与挑战

MAS技术作为一种系统性的分析方法,在提升并网变流器的电网支撑能力方面具有广阔的应用前景。它可以应用于:

  • 新型并网变流器的研发与测试:

     在新型变流器的设计阶段,利用MAS技术评估不同拓扑结构和控制策略下的电网支撑能力,指导研发方向。在变流器出厂前进行测试,评估其在模拟弱电网或故障条件下的支撑能力。

  • 大规模新能源并网规划:

     在规划大规模新能源电站时,利用MAS技术评估新能源发电单元对电网稳定性的影响,确定所需的变流器支撑能力,并进行合理的电网接入点选择和容量配置。

  • 现有变流器的控制策略升级:

     利用MAS技术分析现有并网变流器在当前电网条件下的支撑潜力,通过软件升级优化控制参数,提升其电网支撑能力。

  • 电力系统运行控制:

     基于MAS技术的在线分析结果,实时调整并网变流器的控制模式和参数,以应对电网的动态变化和运行挑战。

然而,MAS技术的推广和应用也面临一些挑战:

  • 精确建模的难度:

     建立能够准确反映变流器和复杂电网动态特性的模型需要深入的理论知识和丰富的实践经验。

  • 计算复杂度:

     尤其是在大规模电力系统中进行大扰动稳定性分析或优化计算,可能需要大量的计算资源和时间。

  • 电网参数的实时获取:

     MAS技术依赖于准确的电网参数信息,而电网参数可能随时间和运行工况变化,实时获取准确的电网参数具有一定挑战。

  • 控制策略的协调:

     当多个并网变流器连接到同一个电网区域时,需要协调不同变流器的控制策略,避免相互干扰或加剧振荡。

6. 结论

本文提出了一种利用并网变流器获得最大允许电网支持的分析方法——MAS技术,并对其基本原理、关键分析方法以及在变流器电网支座分析与优化中的应用进行了深入探讨。MAS技术通过系统地建模、分析和优化变流器与电网的相互作用,能够在考虑变流器自身约束和电网条件的前提下,确定并最大化变流器所能提供的电网支撑能力。

随着电力系统对并网变流器电网支撑需求的日益提高,MAS技术将成为评估、设计和优化变流器控制策略的重要工具。未来的研究方向可以包括:进一步提高模型的精确性和计算效率;开发在线MAS分析工具,实现电网支撑能力的实时评估和控制优化;以及研究在复杂弱电网和高渗透率新能源情景下,如何实现多个并网变流器的协调控制,共同提升电网的整体稳定性。通过不断完善和应用MAS技术,将有助于更好地发挥并网变流器在未来智能电网中的关键作用,保障电力系统的安全、稳定和高效运行。

⛳️ 运行结果

🔗 参考文献

[1] 李丽霞,姚兴佳,于宏涛,等.直驱式风力发电系统并网变流器研究[J].沈阳理工大学学报, 2012, 31(2):4.DOI:10.3969/j.issn.1003-1251.2012.02.004.

[2] 李宇飞,王跃,吴金龙,et al.一种分布式发电并网变流器测试装置设计方案及实现[J].电工技术学报, 2015(3):8.DOI:CNKI:SUN:DGJS.0.2015-03-015.

[3] 李宇飞,王跃,吴金龙,等.一种分布式发电并网变流器测试装置设计方案及实现[J].电工技术学报, 2015, 30(3):115-122.DOI:10.3969/j.issn.1000-6753.2015.03.015.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值