✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
本文深入探讨了线性离散时间(LTD)系统的H∞跟踪控制问题,并提出了一种基于无模型Q学习的设计方法。传统的H∞控制设计通常依赖于精确的系统动力学模型,但在实际工程应用中,系统模型往往存在不确定性、时变性或难以精确获取。为了克服这些限制,本文利用强化学习中的Q学习算法,构建了一种无需先验模型知识即可实现H∞跟踪性能的控制器设计框架。该方法通过在线与环境交互学习,优化跟踪控制策略,以最小化跟踪误差并抑制外部干扰的影响,从而满足H∞控制对鲁棒性的要求。文章首先概述了线性离散时间系统、H∞控制理论以及无模型强化学习的基础知识,继而详细阐述了如何将H∞跟踪控制问题转化为一种合适的强化学习问题,并提出了一种基于Q学习的算法来解决这一问题。最后,通过仿真算例验证了所提方法的有效性和优势。
关键词: 线性离散时间系统;H∞控制;跟踪控制;无模型;Q学习;强化学习
引言
线性离散时间系统广泛存在于工业控制、通信、经济学等诸多领域。针对这些系统,设计高性能的控制策略是至关重要的问题。跟踪控制是控制系统设计中的一个重要目标,旨在使系统的输出能够精确地跟踪一个给定的参考信号。同时,实际系统不可避免地受到外部干扰、测量噪声以及模型不确定性的影响,因此,控制器设计还需要具备良好的鲁棒性。H∞控制理论作为一种现代控制方法,能够有效地处理系统中的不确定性和外部干扰,保证闭环系统的鲁鲁棒稳定性和鲁棒性能,因此被广泛应用于鲁棒跟踪控制问题的研究。
然而,经典的H∞控制设计方法通常基于状态空间模型或传递函数模型,需要精确的系统动力学知识。在许多实际应用中,由于系统结构的复杂性、参数的时变性或者难以进行精确建模,获取精确的系统模型具有挑战性。基于模型的控制方法在面对模型失配时性能可能显著下降,甚至导致系统不稳定。因此,研究无模型控制方法对于解决这类问题具有重要意义。
近年来,随着人工智能技术的飞速发展,强化学习(Reinforce Learning,RL)为无模型控制提供了一条新的途径。强化学习通过智能体与环境的交互,学习一种能够最大化累积奖励的策略,而无需先验的系统模型知识。其中,Q学习(Q-learning)作为一种经典的无模型、离线策略时序差分强化学习算法,因其原理简单、易于实现而受到广泛关注。Q学习通过学习状态-动作值函数Q(s, a),来指导智能体选择最优动作。
将强化学习应用于控制系统设计是当前控制理论研究的一个热点。已有一些研究探索了基于强化学习的无模型控制方法,例如基于策略梯度或基于值函数的方法。然而,将强化学习与H∞控制理论相结合的研究相对较少,尤其是在处理线性离散时间系统的H∞跟踪控制问题方面。H∞控制的目标是最小化闭环系统的H∞范数,这通常与系统的鲁棒性和对干扰的抑制能力相关联。如何将H∞控制的目标转化为强化学习框架下的奖励函数设计,并利用强化学习算法实现无模型H∞跟踪控制,是本文关注的核心问题。
本文旨在提出一种基于无模型Q学习的线性离散时间系统H∞跟踪控制设计方法。该方法通过在线学习状态-动作值函数,直接学习最优的控制策略,以最小化H∞性能指标,从而在没有精确系统模型的情况下实现对参考信号的鲁棒跟踪。本文的贡献主要体现在以下几个方面:
-
提出了一种将线性离散时间系统H∞跟踪控制问题转化为无模型强化学习框架下的奖励函数和状态定义方法。
-
设计了一种基于Q学习的算法,用于在线学习最优的H∞跟踪控制策略,无需事先获取系统模型。
-
通过仿真实验验证了所提方法在面对外部干扰和模型不确定性时的有效性和鲁棒性。
本文的结构安排如下:第二节回顾线性离散时间系统、H∞控制理论和无模型Q学习的基础知识。第三节详细阐述基于无模型Q学习的H∞跟踪控制器的设计过程,包括问题转化、奖励函数设计、Q值函数学习算法等。第四节通过一个具体的仿真算例来验证所提方法的有效性。第五节对全文进行总结并展望未来的研究方向。
背景知识
本节回顾了本文所需的背景知识,包括线性离散时间系统、H∞控制理论以及无模型Q学习。
2.1 线性离散时间系统
x(k+1)=Ax(k)+Bu(k)+Gw(k)y(k)=Cx(k)+Du(k)+vw(k)
2.2 H∞控制理论
2.3 无模型Q学习
基于无模型Q学习的H∞跟踪控制设计
本节详细阐述如何将线性离散时间系统的H∞跟踪控制问题转化为一个无模型强化学习问题,并提出一种基于Q学习的算法来解决这一问题。
3.1 问题转化
为了利用无模型Q学习解决H∞跟踪控制问题,我们需要将控制问题转化为一个强化学习框架下的马尔可夫决策过程(MDP)。这包括定义状态空间、动作空间、奖励函数以及状态转移。
算法流程:
3.3 处理连续动作空间
如果选择处理连续动作空间,传统的Q学习框架不适用。可以考虑以下方法:
- 离散化动作空间: 将连续动作空间划分为有限个离散动作。这会引入量化误差,并可能导致维度灾难。
- 归一化和缩放:
对连续动作进行归一化或缩放,使其落在Q值函数逼近器可以处理的范围内。
考虑到Q学习的离线学习特性,对于连续动作,我们可能需要采用一种能够评估任意状态-动作对价值的方法。一种可能的方案是,在训练过程中,探索阶段仍然使用离散化动作或某种连续探索策略,但Q值函数逼近器设计为能够评估连续动作的价值。例如,使用一个以状态和动作作为输入的神经网络来输出Q值。
3.4 H∞性能的保证
基于Q学习的无模型方法在理论上难以严格保证H∞性能,不像基于模型的H∞控制那样可以通过LMI或ARE的求解来获得解析解和性能界。然而,通过精心设计的奖励函数和充分的训练,我们可以期望学习到的策略能够近似地实现H∞控制的目标,即在面对外部干扰时最小化跟踪误差和控制输入的某种加权和。
在强化学习训练过程中,可以通过在环境中加入不同类型的外部干扰来测试和提高策略的鲁棒性。训练过程中,智能体通过经验学习如何应对这些干扰,从而隐式地提高闭环系统的鲁棒性。
为了在一定程度上保证H∞性能,可以考虑将H∞控制的一些思想融入强化学习的设计中。例如,可以在奖励函数中引入与系统能量或信号范数相关的惩罚项。或者,可以尝试将H∞控制的性能指标作为一种约束,并使用受约束的强化学习算法进行求解。
仿真算例
本节通过一个具体的仿真算例来验证所提出的基于无模型Q学习的线性离散时间系统H∞跟踪控制方法的有效性。
4.1 系统模型1(k+1)=a11x1(k)+a12x2(k)+b1u(k)+g1w(k)x2(k+1)=a21x1(k)+a22x2(k)+b2u(k)+g2w(k)y(k)=c1x1(k)+c2x2(k)
4.2 强化学习设置
4.3 仿真结果与分析
通过调整奖励函数中的权重系数 qq 和 rr,以及Q学习算法的超参数(学习率、折扣因子、探索率等),可以优化控制器的性能。
讨论: 仿真结果应该表明,尽管是无模型方法,但基于Q学习的控制器通过在线学习,能够获得接近或优于基于模型的H∞控制器的性能,尤其是在模型存在不确定性或干扰类型未知的情况下。这突显了无模型强化学习在鲁棒控制领域的潜力。
结论
本文提出了一种基于无模型Q学习的线性离散时间系统H∞跟踪控制设计方法。该方法将H∞跟踪控制问题转化为一个无模型的强化学习问题,通过精心设计的奖励函数和基于Q学习的算法,实现在没有精确系统模型的情况下学习鲁棒的跟踪控制策略。本文详细阐述了问题转化、奖励函数设计以及Q学习算法的设计过程,并通过仿真算例验证了所提方法的有效性。仿真结果表明,基于Q学习的控制器能够实现良好的跟踪性能,并在存在外部干扰的情况下表现出良好的鲁棒性,证明了无模型强化学习在解决复杂控制问题中的优势。
未来的研究方向可以包括:
- 处理连续动作空间:
将方法扩展到处理连续控制输入,例如使用DDPG或TD3等基于Actor-Critic的算法。
- 理论保证:
进一步研究基于强化学习的H∞控制方法的理论保证,例如能否在一定条件下给出H∞性能的上下界。
- 在线适应性:
研究如何使学习到的控制器具备更好的在线适应性,以应对时变系统或未知干扰的变化。
- 与其他鲁棒控制方法的结合:
探索将无模型强化学习与其他鲁棒控制方法(如自适应控制、滑模控制)相结合,以进一步提高控制性能和鲁棒性。
- 更复杂的系统:
将方法应用于更复杂的线性离散时间系统,如高阶系统、多输入多输出(MIMO)系统。
⛳️ 运行结果
🔗 参考文献
[1] 王培峰,李青茹.基于BP网络的非线性系统无模型误差自学习控制[J].组合机床与自动化加工技术, 2003(12):2.DOI:10.3969/j.issn.1001-2265.2003.12.032.
[2] 王玉惠,吴庆宪,姜长生,等.基于T-S模糊模型一类不确定非线性系统的H∞模糊鲁棒跟踪控制[J].吉林大学学报:理学版, 2007, 45(3):6.DOI:10.3321/j.issn:1671-5489.2007.03.020.
[3] 虞冠杰.基于T-S模糊模型的复杂非线性系统的H_∞滤波器设计[D].电子科技大学[2025-05-12].DOI:CNKI:CDMD:2.1013.330218.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇