✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
在诸多科学、工程和技术领域,准确的状态估计是实现系统控制、决策制定和预测的关键。然而,现实世界中的观测信号常常受到噪声、干扰以及异常值的污染。异常值,即与大部分观测值显著偏离的数据点,其存在会严重损害传统状态估计算法的精度和可靠性。传统的基于最小二乘原理的状态估计算法,例如卡尔曼滤波器,对高斯噪声具有最优性能,但对异常值却极为敏感。一个或少数几个异常值可能导致估计结果发生显著偏差,甚至完全失效。因此,研究和开发能够有效应对异常值,提高状态估计鲁棒性的方法至关重要。
本文将深入探讨一种基于中位数的多个候选观测信号的状态估计方法。该方法利用中位数对异常值的固有鲁棒性,通过处理多个潜在的观测信号,从而在存在异常值的情况下实现更准确和可靠的状态估计。我们将首先回顾传统状态估计中的异常值挑战,然后详细阐述基于中位数的多个候选观测信号方法的原理、实现细节以及其在异常值环境下的优势。最后,我们将通过对该方法中异常值的深入研究,探讨其对算法性能的影响以及进一步提升鲁棒性的潜在途径。
传统状态估计中的异常值挑战
状态估计的核心问题是利用一系列受噪声污染的观测值来推断系统未知的状态。典型的系统模型可以表示为状态空间形式:
异常值可能来源于多种因素,例如传感器故障、通信中断、环境突变或其他非模型因素。一个异常值在观测值中表现为与预测值或相邻观测值显著不同的数值。由于最小二乘原理会放大误差平方项的影响,一个较大的误差平方项(由异常值产生)会在优化过程中占据主导地位,导致估计结果偏向异常值,从而产生巨大的估计偏差。在导航、机器人、自动驾驶等对实时性和准确性要求极高的应用中,异常值导致的估计错误可能带来灾难性的后果。
为了应对异常值,研究者们提出了多种方法,包括:
- 异常值检测与剔除:
通过统计检验、残差分析或机器学习方法识别异常值,并在估计过程中将其剔除。然而,精确地检测和剔除异常值本身就是一个挑战,错误地剔除正常观测值或未能识别异常值都会损害估计性能。
- 鲁棒估计器:
设计对异常值不敏感的估计准则,例如基于M-估计或L-估计的滤波器。这些方法通过修改目标函数来削弱异常值的影响,但其计算复杂度通常较高,且在噪声分布偏离假设时性能可能下降。
- 多模型估计:
考虑多种可能的系统模型或噪声模型,并利用概率方法进行融合。这种方法虽然能够处理一定程度的异常情况,但在模型数量庞大时计算负担沉重。
基于中位数的多个候选观测信号方法属于鲁棒估计器的一种,其核心思想在于利用中位数对异常值的天然免疫性。
基于中位数的多个候选观测信号方法
该方法的核心思想在于不依赖单一的观测值进行状态更新,而是考虑由当前观测值生成的多个候选观测信号。然后,通过中位数对这些候选观测信号进行融合或选择,从而抑制异常值的影响。其基本流程可以概括如下:
生成候选观测信号的具体策略取决于应用场景和对异常值特性的了解。目标是生成一组能够代表当前时刻潜在真实观测值的集合,其中包含真实值、受噪声污染的正常值以及可能存在的异常值。
- 基于中位数对候选信号进行权重分配或选择:
计算每个候选信号与中位数之间的距离,距离越近的信号赋予越高的权重或被优先选择用于更新。这种方法更加灵活,可以根据实际情况调整权重分配策略。
基于中位数的多个候选观测信号方法的核心优势在于其对异常值的鲁棒性。中位数的定义决定了它只依赖于数据的排序,而不受具体数值大小的影响。因此,即使存在少数极端的异常值,它们对中位数的影响也非常有限。通过生成多个候选观测信号,并将中位数作为融合或选择的标准,该方法能够有效地抑制异常值的干扰,提高状态估计的精度和可靠性。
异常值在基于中位数方法中的研究
虽然基于中位数的方法对异常值具有内在的鲁棒性,但深入研究异常值在该方法中的影响仍然至关重要。以下几个方面值得深入探讨:
-
异常值的比例与分布对性能的影响: 中位数对异常值的鲁棒性并非无限的。当异常值的数量占候选观测信号总数的比例过高时,中位数也可能受到影响。例如,如果超过一半的候选信号是异常值,那么中位数将反映异常值的特征。研究不同比例和分布的异常值(例如,单点异常值、连续异常值或脉冲异常值)对基于中位数方法的性能影响,有助于确定该方法的适用范围和局限性。
-
候选观测信号生成策略对鲁棒性的影响: 如何有效地生成能够包含真实信息的候选观测信号是该方法成功的关键。如果候选信号生成策略不当,例如生成的候选信号普遍受到异常值的污染,那么即使使用中位数也无法保证准确性。研究不同的候选信号生成策略,评估其在不同异常值场景下的表现,有助于优化算法的性能。例如,基于历史平滑的方法在连续异常值情况下可能效果不佳,而基于预测值修正的方法可能对预测误差敏感。
-
中位数处理方式的选择: 直接取中位数、基于中位数进行权重分配或选择等不同的中位数处理方式对算法性能有不同的影响。研究各种处理方式的优缺点,分析其在不同异常值场景下的表现,有助于选择最适合特定应用的处理方式。例如,基于中位数的权重分配方法可能在异常值比例不高的情况下表现更好,能够保留部分非异常值的有用信息。
-
多变量观测中的中位数: 在多变量观测的情况下,如何定义和计算中位数需要进一步研究。常用的方法包括分量独立地计算中位数,或者使用多维中位数(如Tukey深度中位数)。研究不同多维中位数概念在该方法中的应用及其对异常值的鲁棒性具有重要意义。
-
与其他鲁棒方法的结合: 基于中位数的方法可以与其他鲁棒估计技术相结合,进一步提升鲁棒性。例如,可以先利用异常值检测方法初步筛选观测值,然后再应用基于中位数的方法。研究不同鲁棒方法的组合策略,探索更强大的异常值应对机制。
结论
基于中位数的多个候选观测信号方法为解决状态估计中的异常值挑战提供了一种有效的途径。通过利用中位数对异常值的内在鲁棒性,并结合多个潜在的观测信号,该方法能够有效地抑制异常值的干扰,提高状态估计的准确性和可靠性。该方法在导航、机器人、传感器网络等对鲁棒性要求较高的领域具有广阔的应用前景。
然而,对异常值在该方法中的深入研究仍然是必要的。理解异常值的比例、分布以及候选信号生成策略对算法性能的影响,探索不同的中位数处理方式,研究多变量观测中的中位数概念,以及与其他鲁棒方法的结合,都将有助于进一步完善该方法,提升其在复杂和不确定环境下的性能。未来的研究可以进一步探索自适应的候选信号生成策略,基于机器学习的异常值检测与中位数处理相结合的方法,以及针对特定应用场景优化算法参数等方向,从而为构建更加鲁健壮、可靠的状态估计算法奠定基础。通过持续深入的研究和实践,基于中位数的多个候选观测信号方法有望在未来状态估计领域发挥越来越重要的作用。
⛳️ 运行结果
🔗 参考文献
[1] 李湘.配电网多谐波源识别方法的研究[D].重庆大学,2015.
[2] 陈玲.基于贝叶斯滤波理论的多目标协同跟踪方法研究[D].江苏大学,2022.
[3] 熊茂涛.光电目标跟踪中的预测滤波技术研究[J].光电技术研究所博硕士论文, 2009.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇