经验分布函数无偏性的证明和方差的推导

经验分布函数

定义: X 1 , ⋯   , X n ∼ F X_1, \cdots,X_n\sim F X1,,XnF为IID样本,F是某个分布函数。则F的一个估计为经验分布函数: F n ^ ( x ) = ∑ i = 1 N I ( X i < x ) n \hat{F_n}(x)=\frac{\sum_{i=1}^{N}I(X_i<x)}{n} Fn^(x)=ni=1NI(Xi<x)上式的含义是在每一个数据处放置一个 1 n \frac{1}{n} n1的概率密度。个人理解就是类似于一个累计直方图。
其中, I ( X i < x ) I(X_i<x) I(Xi<x)是示性函数,括号内满足时为1,不满足时为0。特别注意上式是关于 x x x的函数。

无偏性

下面我要证明这个估计是一个无偏估计。
E [ F n ^ ( x ) ] = E [ ∑ i = 1 N I ( X i < x ) n ] = 1 n ∑ i = 1 N E [ I ( X i < x ) ] = 1 n ∑ i = 1 N ∫ x I ( X i < x ) f X ( x ) d x = 1 n ∑ i = 1 N ∫ X i < x f X ( x ) d x = 1 n ∑ i = 1 N P ( X i < x ) = F ( x ) \begin{aligned} E[\hat{F_n}(x)] & =E[\frac{\sum_{i=1}^{N}I(X_i<x)}{n}]\\ & =\frac{1}{n}\sum_{i=1}^{N}E[I(X_i<x)]\\ &=\frac{1}{n}\sum_{i=1}^{N}\int_xI(X_i<x)f_X(x)dx\\ &=\frac{1}{n}\sum_{i=1}^{N}\int_{X_i<x}f_X(x)dx\\ &=\frac{1}{n}\sum_{i=1}^{N}P(X_i<x)\\ &=F(x) \end{aligned} E[Fn^(x)]=E[ni=1NI(Xi<x)]=n1i=1NE[I(Xi<x)]=n1i=1NxI(Xi<x)fX(x)dx=n1i=1NXi<xfX(x)dx=n1i=1NP(Xi<x)=F(x)

方差的推导

V ( F n ^ ( x ) ) = V ( ∑ i = 1 N I ( X i < x ) n ) = 1 n 2 ∑ i = 1 N V ( I ( X i < x ) ) = 1 n 2 ∑ i = 1 N ( E ( I ( X i < x ) 2 ) − ( E ( I ( X i < x ) ) ) 2 ) = 1 n 2 ∑ i = 1 N ( E ( I ( X i < x ) − ( E ( I ( X i < x ) ) ) 2 ) = 1 n 2 ∑ i = 1 N ( F ( x ) − F ( x ) 2 ) = F ( x ) ( 1 − F ( x ) ) n \begin{aligned} \mathbb{V}(\hat{F_n}(x))&=V(\frac{\sum_{i=1}^{N}I(X_i<x)}{n})\\ &=\frac{1}{n^2}\sum_{i=1}^{N}V(I(X_i<x))\\ &=\frac{1}{n^2}\sum_{i=1}^{N}(E(I(X_i<x)^2)-(E(I(X_i<x)))^2)\\ &=\frac{1}{n^2}\sum_{i=1}^{N}(E(I(X_i<x)-(E(I(X_i<x)))^2)\\ &=\frac{1}{n^2}\sum_{i=1}^{N}(F(x)-F(x)^2)\\ &=\frac{F(x)(1-F(x))}{n} \end{aligned} V(Fn^(x))=V(ni=1NI(Xi<x))=n21i=1NV(I(Xi<x))=n21i=1N(E(I(Xi<x)2)(E(I(Xi<x)))2)=n21i=1N(E(I(Xi<x)(E(I(Xi<x)))2)=n21i=1N(F(x)F(x)2)=nF(x)(1F(x))
这里面用到了示性函数的平方等于它本身的特点。

这实际上也是Larry Wasserman《All of statistics》定理7.3的证明,也就是课后习题第一道。证明过程都是自己写的,不一定正确,欢迎大家来探讨。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值