深度学习论文: NAM: Normalization-based Attention Module及其PyTorch实现
NAM: Normalization-based Attention Module
PDF: https://arxiv.org/pdf/2111.12419.pdf
PyTorch代码: https://github.com/shanglianlm0525/CvPytorch
PyTorch代码: https://github.com/shanglianlm0525/PyTorch-Networks
1 概述
NAM作为一种高效、轻量级的注意力机制。
- NAM采用CBAM的模块整合,重新设计了通道和空间注意力子模块。
- 在每个网络块的末端嵌入一个NAM模块。对于残差网络,它嵌入在残差结构的末端。
- 利用权重的贡献因子来改善注意力机制。使用批归一化的比例因子,它使用标准差来表示权重的重要性。这可以避免添加SE、BAM和CBAM中使用的全连接层和卷积层。