频域响应分析法
频率特性的基本概念
系统(或环节)对正弦输入信号的稳态响应。
幅值比:同频率下输出信号与输入信号的幅值
之比。
相位差:同频率下输出信号的相位与输入信号
的相位之差。
幅频特性:幅值比与频率之间的关系。
相频特性:相位差与频率之间的关系。
幅相特性:将幅频和相频绘制到一起,即极坐标图中。
频率特性和传递函数的关系
求取频率特性的方法:
实验法、传递函数法。
传递函数法:
频率特性图示法
频率特性的极坐标图
通过频率特性G(jw)的模| G(jw)|与相位∠G(jw)在极坐标中表示的图形,称为极坐标图(Polar plot)或奈魁斯特图( Nyquist plot) 。
系统的开环传递函数是由一系列具有不同传递函数的典型环节所组成
比例环节
传递函数:
G
(
s
)
=
K
G(s) = K
G(s)=K
幅频特性:
∣
G
(
j
ω
)
∣
=
K
|G(j\omega)|=K
∣G(jω)∣=K
相频特性:
φ
(
ω
)
=
0
o
\varphi(\omega)=0^o
φ(ω)=0o
一阶微分环节
传递函数:
G
(
s
)
=
1
+
T
s
G(s)=1+Ts
G(s)=1+Ts
幅频特性:
∣
G
(
j
ω
)
∣
=
1
+
(
ω
T
)
2
|G(j\omega)|=\sqrt{1+(\omega{T})^2}
∣G(jω)∣=1+(ωT)2
相频特性:
∠
G
(
j
ω
)
=
a
r
c
t
a
n
ω
T
\angle{G(j\omega)}=arctan {\omega{T}}
∠G(jω)=arctanωT
惯性环节
传递函数:
G
(
s
)
=
1
1
+
T
s
G(s)={1\over{1+Ts}}
G(s)=1+Ts1
幅频特性:
∣
G
(
j
ω
)
∣
=
1
1
+
(
ω
T
)
2
|G(j\omega)|={1 \over \sqrt{1+(\omega{T})^2}}
∣G(jω)∣=1+(ωT)21
相频特性:
∠
G
(
j
ω
)
=
−
a
r
c
t
a
n
ω
T
\angle{G(j\omega)}=-arctan {\omega{T}}
∠G(jω)=−arctanωT
积分环节
传递函数:
G
(
s
)
=
1
T
s
G(s)={1\over{Ts}}
G(s)=Ts1
幅频特性:
∣
G
(
j
ω
)
∣
=
1
ω
T
|G(j\omega)|={1 \over \omega{T}}
∣G(jω)∣=ωT1
相频特性:
∠
G
(
j
ω
)
=
−
π
2
\angle{G(j\omega)}=-{\pi \over 2}
∠G(jω)=−2π
滞后环节
传递函数:
G
(
s
)
=
e
−
τ
s
G(s)=e^{-\tau{s}}
G(s)=e−τs
频率特性:
G
(
j
ω
)
=
e
−
j
ω
t
G(j\omega)=e^{-j\omega{t}}
G(jω)=e−jωt
幅频特性:
∣
G
(
j
ω
)
∣
=
1
|G(j\omega)|=1
∣G(jω)∣=1
相频特性:
φ
(
ω
)
=
−
ω
τ
(
弧
度
)
=
−
57.3
ω
τ
(
度
)
\varphi(\omega)=-\omega\tau(弧度)=-57.3\omega\tau(度)
φ(ω)=−ωτ(弧度)=−57.3ωτ(度)
振荡环节
传递函数:
G
(
s
)
=
1
T
2
S
2
+
2
ζ
T
s
+
1
G(s)={1 \over {T^2S^2+2\zeta{Ts}+1}}
G(s)=T2S2+2ζTs+11或
G
(
s
)
=
w
n
2
s
2
+
2
ζ
ω
n
s
+
w
n
2
G(s)={w_n^2 \over {s^2+2\zeta\omega_n{s}+w_n^2}}
G(s)=s2+2ζωns+wn2wn2
幅频特性:
∣
G
(
j
ω
)
∣
=
1
(
1
−
ω
2
T
2
)
+
(
2
ζ
T
ω
)
2
|G(j\omega)|={1 \over \sqrt{(1-\omega^2T^2)+(2\zeta{T}\omega)^2}}
∣G(jω)∣=(1−ω2T2)+(2ζTω)21
相频特性:
φ
(
ω
)
=
−
a
r
c
t
g
2
ζ
T
1
−
ω
2
T
2
\varphi(\omega)=-arctg{{2\zeta{T}} \over {1-\omega^2T^2}}
φ(ω)=−arctg1−ω2T22ζT
系统的开环幅相频率特性曲线
求系统的开环幅相特性:
分别求出系统各串联环节频率特性的幅值及相角,然后算出不同频率下开环系统频率特性的幅值及相角,从而就可绘制极坐标图。
频率特性的对数坐标图
通过半对数坐标分别表示幅频特性和相频特性的图形,称为对数坐标图(Logarithmic plot)或伯德图(Bode plot)
基本环节的BOED图
比例环节
传递函数:
G
(
s
)
=
K
G(s)=K
G(s)=K
对数幅频特性:
20
l
g
∣
G
(
j
ω
)
∣
=
20
l
g
K
20lg|G(j\omega)|=20lgK
20lg∣G(jω)∣=20lgK
相频特性:
φ
(
ω
)
=
0
\varphi(\omega)=0
φ(ω)=0
积分环节
传递函数:
G
(
s
)
=
1
s
G(s)={1 \over s}
G(s)=s1
对数幅频特性:
20
l
g
∣
G
(
j
ω
)
∣
=
−
20
l
g
ω
20lg|G(j\omega)|=-20lg\omega
20lg∣G(jω)∣=−20lgω
相频特性:
φ
(
ω
)
=
−
π
2
\varphi(\omega)=-{\pi \over{2}}
φ(ω)=−2π
微分环节
传递函数:
G
(
s
)
=
s
G(s)={s}
G(s)=s
对数幅频特性:
20
l
g
∣
G
(
j
ω
)
∣
=
20
l
g
ω
20lg|G(j\omega)|=20lg\omega
20lg∣G(jω)∣=20lgω
相频特性:
φ
(
ω
)
=
π
2
\varphi(\omega)={\pi \over{2}}
φ(ω)=2π
惯性环节
传递函数:
G
(
s
)
=
1
T
s
+
1
G(s)={1 \over {Ts+1}}
G(s)=Ts+11
对数幅频特性:
20
l
g
∣
G
(
j
ω
)
∣
=
−
20
l
g
1
+
ω
2
T
2
20lg|G(j\omega)|=-20lg\sqrt{1+\omega^2T^2}
20lg∣G(jω)∣=−20lg1+ω2T2
相频特性:
φ
(
ω
)
=
−
a
r
c
t
a
n
ω
T
\varphi(\omega)={-arctan\omega{T}}
φ(ω)=−arctanωT
当
ω
T
<
<
1
\omega{T}<<1
ωT<<1时,对数幅频特性的低频段:
20
l
g
∣
G
(
j
ω
)
∣
≈
−
20
l
g
1
=
0
(
d
B
)
20lg|G(j\omega)|\approx -20lg1=0(dB)
20lg∣G(jω)∣≈−20lg1=0(dB)
当
ω
T
>
>
1
\omega{T}>>1
ωT>>1时,对数幅频特性的高频段:
20
l
g
∣
G
(
j
ω
)
∣
≈
−
20
l
g
ω
T
20lg|G(j\omega)|\approx -20lg\omega{T}
20lg∣G(jω)∣≈−20lgωT
振荡环节
传递函数:
G
(
s
)
=
w
n
2
s
2
+
2
ζ
ω
n
s
+
w
n
2
,
(
0
<
ζ
<
1
)
G(s)={w_n^2 \over {s^2+2\zeta\omega_n{s}+w_n^2}} , (0<\zeta<1)
G(s)=s2+2ζωns+wn2wn2,(0<ζ<1)
相频特性:
φ
(
ω
)
=
−
a
r
c
t
a
n
2
ζ
ω
ω
n
1
−
ω
2
ω
n
2
\varphi(\omega)={-arctan{2\zeta{\omega \over \omega_n}\over{1-{\omega^2 \over \omega_n^2}}}}
φ(ω)=−arctan1−ωn2ω22ζωnω
对数幅频特性:
当
ω
ω
n
<
<
1
{\omega\over\omega_n}<<1
ωnω<<1时,低频段渐近线:
20
l
g
∣
G
(
j
ω
)
∣
≈
0
20lg|G(j\omega)|\approx 0
20lg∣G(jω)∣≈0
当
ω
ω
n
<
<
1
{\omega\over\omega_n}<<1
ωnω<<1时,高频段渐近线:
20
l
g
∣
G
(
j
ω
)
∣
≈
−
40
l
g
ω
ω
n
20lg|G(j\omega)|\approx -40lg{\omega\over\omega_n}
20lg∣G(jω)∣≈−40lgωnω
迟延环节
传递函数:
G
(
s
)
=
e
−
τ
s
G(s)=e^{-\tau{s}}
G(s)=e−τs
对数幅频特性:
20
l
g
∣
G
(
j
ω
)
∣
=
0
20lg|G(j\omega)|=0
20lg∣G(jω)∣=0
相频特性:
φ
(
ω
)
=
−
ω
τ
=
−
57.3
ω
τ
o
\varphi(\omega)=-\omega\tau=-57.3\omega\tau^o
φ(ω)=−ωτ=−57.3ωτo
一阶微分环节
传递函数:
G
(
s
)
=
T
s
+
1
G(s)=Ts+1
G(s)=Ts+1
对数幅频特性:
20
l
g
∣
G
(
j
ω
)
∣
=
20
l
g
1
+
ω
2
T
2
20lg|G(j\omega)|=20lg\sqrt{1+\omega^2T^2}
20lg∣G(jω)∣=20lg1+ω2T2
相频特性:
φ
(
ω
)
=
a
r
c
t
g
ω
T
\varphi(\omega)=arctg\omega{T}
φ(ω)=arctgωT
系统的开环对数特性曲线
绘制系统开环对数坐标图的一般步骤和方法:
- 写出以时间常数表示、以典型环节频率特性连乘积形式的系统频率特性。
- 求出各环节的转角频率 (Breakfrequency/
Corner frequency),并从小到大依次标注在对数坐标图的横坐标上。 - 计算20lgK的分贝值, 其中K是系统开环放大系数。过w =1,20lg K这一点,做斜率为-20NdB/dec的直线,此即为低频段的渐近线,其中N是开环系统包含串联积分环节的个数。
- 绘制对数幅频特性的其它渐近线,方法是从低频段渐近线开始,从左到右,每遇到一个转角频率就按上述规律改变一次上一频段的斜率。如有必要再利用误差曲线修正,得到精确对数幅频特性的光滑曲线。
- 给出不同 ω \omega ω的值,计算对应的 φ i ( ω ) \varphi_i(\omega) φi(ω),再进行代数相加算出系统的相频特性曲线。
最小相位系统
最小相位传递函数:在复平面S的右半面既没有
极点、也没有零点的系统开环传递函数。
最小相位系统:具有最小相位传递函数的系统。
特点:
- 具有相同幅频特性的系统,最小相位系统的相角
变化范围最小。 - 对于最小相位系统而言,幅频特性和相频特性之
间有着确定的单值关系。 - 当 ω → ∞ \omega\to\infty ω→∞时,幅频特性的斜率为-20(n-m)dB/dec, 其中n,m分别为传递函数中分母、分子多项式的阶数,而相角等于-90°(n-m),则系统是最小相位系统。
频率特性的稳定性分析
映射定理
如果s平面上的封闭曲线以顺时针方向包围函数F(s)的Z个零点和P个极点,则F(s)平面上的映射曲线相应地包围坐标原点N次,
N = Z -P
若Z>P, N为正值,包围方向为顺时针;
若Z<P, N为负值,包围方向为逆时针。
这种映射关系,称为映射定理。
奈奎斯特稳定判据
奈魁斯特稳定判据:
对于开环稳定系统(即P=0,G(s)H(s)在右半S平面无极点 ),当且仅当开环频率特性曲线G(jw)H(jw)不通过也不包围(-1,j0)点时,即N = 0,闭环系统才是稳定的。
(2) 对于开环不稳定系统(即P≠0,G(s)H(s)在右半S平面含有P个极点),当且仅当开环频率特性曲线 G(jw)Η(jw)逆时针包围(-1, j0)点的次数N等于开环传递函数G(s)H(s)在右半S平面的极点数P时,即N = -P,闭环系统才是稳定的。
奈魁斯特判据 的物理意义:
相对稳定性(Ralative stability)
开环系统频率特性G(jw)H(jw)与(-1, j0)点的
远近程度可用来表示闭环系统的稳定程度。
相角裕量(Phase margin)
γ
\gamma
γ:
γ
=
180
°
+
ϕ
(
ω
c
)
\gamma=180°+\phi(\omega_c)
γ=180°+ϕ(ωc)
式中
ω
c
\omega_c
ωc称为系统的交界频率,或者剪切频率.
幅值裕量(Gain margin)
K
g
Kg
Kg:
K
g
=
1
G
(
ω
g
)
∗
H
(
ω
g
)
K_g={1 \over {G(\omega_g)*H(\omega_g)}}
Kg=G(ωg)∗H(ωg)1
频率
ω
g
\omega_g
ωg称为系统的相角交界频率 .
系统的闭环频率特性
- 闭环频率特性与开环频率特性关系
- 等M圆图
- 等N圆图
- 尼柯尔斯图
频率特性与瞬态响应
二阶系统的频域性能指标与阻尼比的关系
- 谐振频率
ω
r
\omega_r
ωr
当 0 ≤ ζ ≤ 0.707 0\le\zeta\le{0.707} 0≤ζ≤0.707时, M ( ω ) M(\omega) M(ω)在某一频率 ω r \omega_r ωr处有极大值。
ω r = ω n 1 − 2 ζ 2 \omega_r=\omega_n\sqrt{1-2\zeta^2} ωr=ωn1−2ζ2
- 谐振频率
M
r
M_r
Mr
- 带宽频率
ω
b
\omega_b
ωb
截止频率 ω b \omega_b ωb是闭环频率特性的幅值降为=0.707时的频率值,又称为带宽频率。
- 相角裕量
γ
\gamma
γ
开环频率特性幅值为1时的相角与180°之和。
二阶系统的相角裕量为:
当 ζ ≤ 0.7 \zeta\le0.7 ζ≤0.7的范围内,它们的关系可以近似地表示为 ζ = 0.01 γ \zeta=0.01\gamma ζ=0.01γ
高阶系统的频域性能指标及近似处理