求坐标转换矩阵

以下内容纯为本人笔记,各位高手请轻喷。

假设有

BoxA .............对应模型空间XA

BoxB..............对应模型空间XB

对应到世界坐标系的旋转矩阵: MatrixA, MatrixB

则世界坐标系中,A,B的各属性对应的坐标:(列向量表示)

Wa=MatrixA*BoxA...................................1

Wb=MatrixB*BoxB...................................2

对于式子1:左乘MatrixA的逆矩阵(MA^-1)有:

BoxA=(MA^-1)*Wa

可以看做为:

(单位矩阵)*BoxA=(MA^-1)*Wa

即:世界空间坐标Wa到BoxA的模型空间坐标BoxA的转换矩阵为(MA^-1)

那么世界坐标Wb到BoxA的模型空间的坐标为C:

C=(MA^-1)*Wb

联系2式,有

C=(MA^-1)*Wb=(MA^-1)*MatrixB*BoxB;

也可看做:

(单位矩阵)*C=(MA^-1)*Wb=(MA^-1)*MatrixB*BoxB;

则从B模型空间到A模型空间的转换矩阵为:

【【A模型空间到世界空间的转换矩阵的逆矩阵】】【乘以】  【【B模型空间到世界空间的转换矩阵】】。

即转换矩阵为:(MA^-1)*MatrixB





平面坐标坐标转换矩阵是用于在二维平面上将一个坐标系中的点转换到另一个坐标系中的数学工具。它的原理基于线性代数中的矩阵乘法,通常用于图形学、机器人学、地理信息系统等领域。 在二维平面中,坐标转换可以通过一个2x2的变换矩阵和一个向量的乘法来实现。这个变换矩阵包含了旋转、缩放、剪切和平移等操作的信息。假设我们有一个点P,在原始坐标系中的坐标为(x, y),我们想要将其转换到新的坐标系中,我们可以使用以下公式: \[ \begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} e \\ f \end{bmatrix} \] 其中: - \( \begin{bmatrix} x' \\ y' \end{bmatrix} \) 是点P在新坐标系中的坐标。 - \( \begin{bmatrix} a & b \\ c & d \end{bmatrix} \) 是一个2x2的变换矩阵,用于执行旋转和缩放操作。 - \( a \) 和 \( d \) 表示围绕原点的旋转角度的余弦值和正弦值。 - \( b \) 和 \( c \) 表示剪切变换。 - \( \begin{bmatrix} e \\ f \end{bmatrix} \) 是一个平移向量,用于将坐标原点从一个位置移动到另一个位置。 根据矩阵乘法的规则,上述公式可以展开为: \[ x' = ax + by + e \] \[ y' = cx + dy + f \] 通过这种方式,我们可以将点从一个坐标系转换到另一个坐标系。需要注意的是,平移操作是通过向量加法实现的,而旋转和缩放是通过矩阵乘法实现的。当只有旋转和缩放而没有平移时,变换矩阵可以简化为2x2的矩阵
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值