基于模型预测的四旋翼无人机位置控制算法研究(论文)

本文探讨了四旋翼无人机的发展历史,详细介绍了模型预测控制器和自适应模型预测控制在位置控制中的应用,通过Matlab仿真展示了不同控制策略的效果,并设计了用户界面。研究旨在提升无人机控制精度和鲁棒性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目 录
第1章 绪论 1
1.1无人机发展历史 1
1.2课题背景及研究意义 2
1.3研究现状 3
1.4 文章结构 4
第2章 四旋翼无人机数学模型 6
2.1四旋翼无人机机械结构与运动方式 6
2.2坐标系与坐标变换 8
2.3四旋翼无人机数学模型 10
2.4本章小结 11
第3章 模型预测控制器设计 12
3.1模型预测控制的发展与应用 12
3.2模型预测控制简介 13
3.3模型预测控制器设计 16
3.4本章小节 18
第4章 四旋翼无人机位置控制仿真 19
4.1实验平台简介 19
4.2位置控制建模 19
4.3仿真结果 21
4.4本章小节 25
第5章 基于自适应模型预测的四旋翼无人机位置控制 26
5.1引言 26
5.2模型参考自适应控制简介 28
5.3控制器设计 30
5.4仿真结果对比 32
5.5 本章小结 35
第6章 四旋翼无人机位置控制GUI设计 36
6.1MATLAB GUIDE工具箱简介 36
6.2四旋翼无人机位置控制GUI界面 37
6.3 本章小结 40
第7章 总结与展望 42
7.1工作总结 42
7.2未来展望 42
参考文献 44
致 谢 45
附录 46

插图和附表清单
图 11 AR.Drone 和Inspire2无人机 2
图 21四旋翼无人机机体结构 6
图 22 Parrot AR.Drone2.0四旋翼无人机 7
图 23坐标系示意图 9
图 24 四旋翼无人机姿态角定义 9
图 31控制系统框图 17
图 41位置控制的三种形式 20
图 42锯齿形参考路径 21
图 43 参考轨迹 21
图 44 定点控制结果 22
图 45锯齿形路径跟随 23
图 46 正方形轨迹跟踪结果 23
图 47圆形轨迹跟踪 24
图 48 “8”字形轨迹跟踪 24
图 49 螺旋形轨迹跟踪 25
图 51 非线性误差下仿真结果 27
图 52 MRAC系统框图 28
图 53 自适应MPC系统框图 30
图 54 三角函数拟合非线性误差MPC和MPC-MRAC控制器效果对比 33
图 55 二次函数非线性误差MPC和MPC-MRAC控制器效果对比 34
图 56三次函数非线性误差MPC控制器效果 34
图 57三次函数拟合非线性误差MRAC控制器效果 35
图 61 GUIDE工具基本界面 37
图 62 四旋翼位置控制GUI主界面 37
图 63 MPC控制器界面 38
图 64 GUI参考轨迹界面 38
图 65 自适应MPC界面 39
图 66 参考路径选择 39
图 67 MPC控制器效果 40
图 68 自适应MPC与MPC控制效果对比 40

主要符号和术语表
被控对象状态、参考模型状态、目标位置
控制指令(模型参考自适应看算法原理)
被控对象和参考模型控制量、模型预测控制输出
被控对象、参考模型横坐标
被控对象纵坐标、参考模型纵坐标
被控对象高度、参考模型高度
被控对象偏航角、参考模型偏航角
被控对象横坐标速度、参考模型横坐标速度
被控对象纵坐标速度、参考模型纵坐标速度
前进通道控制量
侧向通道控制量
高度通道控制量
偏航通道控制量
被控对和参考模型跟踪误差
被控对象和参考模型状态矩阵
被控对象和参考模型控制矩阵
模型预测控制成本函数
模型预测控制时域
模型预测预测时域
模型预测算法状态权重矩阵
模型预测算法控制权重矩阵
李亚普洛夫稳定矩阵
求解李亚普诺夫函数的权重矩阵
控制律被控对象状态系数
控制律参考指令系数
未知权重系数(拟合非线性误差)
状态系数自适应率
参考指令系数自适应率
未知权重系数自适应率
PD控制器比例系数
PD控制器微分系数
1.4 文章结构
第一章介绍了无人机的发展与应用、本课题的研究背景及研究意义,然后介绍了四旋翼无人机位置控制算法的研究现状。
第二章首先分析四旋翼无人机机械结构与运动方式;然后建立位置控制的机体坐标系和参考坐标系;最后介绍Parrot 公司的AR .Drone 2.0无人机的数学模型。
第三章首先介绍模型预测控制的发展过程、基本原理,推导了最优解的求解过程;然后基于四旋翼无人机数学模型设计了位置控制的模型预测控制器,并绘制 控制系统框图。
第四章首先介绍本文实验仿真平台,MathWorks公司的可视化编程工具箱Simulink;然后介绍了四旋翼无人机常用的位置控制类型并建立位置控制参考轨迹模型;最后仿真了四旋翼无人机模型预测控制器在不同参考轨迹下的控制效果。
第五章首先分析模型预测控制算法现有的不足,提出自适应MPC的方案;然后介绍模型参考自适应控制(MRAC)的发展与应用,分析MRAC算法的原理,推导了控制作用的求解过程;然后设计了四旋翼无人机的自适应模型预测控制器,绘制了控制系统框图;最后在四旋翼无人机模型存在非线性误差的情况下,仿真验证了自适应MPC的效果,并与模型预测控制做了对比。
第六章借助MATLAB的GUIDE工具箱设计了四旋翼无人机位置控制操作界面,利用GUI界面的交互式操作功能综合仿真了模型预测控制和自适应MPC在四旋翼无人机位置控制中的控制效果。
第七章总结了本文的主要工作,对后续工作内容做展望。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

### 实现模型预测控制(MPC)与自适应滑模控制(ASMC)结合的Matlab/Simulink仿真 #### 设计思路 为了在 Matlab Simulink 中实现 MPC 和 ASMC 的组合控制系统,可以采用分层结构。顶层通过 MPC 进行车道跟踪或速度调节等宏观层面的任务规划;底层则利用 ASMC 来处理具体的执行机构动作,比如转向角或加减速指令的具体实施。 #### 创建Simulink环境 启动 MATLAB 并打开新的 Simulink 模型文件,在此环境中构建所需的子系统框图并连接各个组件。对于 MPC 部分可以直接调用官方提供的 `mpc` 函数创建控制器对象,并将其集成到 Simulink 当中[^2]。 ```matlab % 定义MPC参数 Ts = 0.1; %采样时间(s) p = 10; %预估步数 m = 3; %控制移动范围 Weights.OutputVariables = [1 0]; % 输出变量权重向量 Weights.ManipulatedVariablesRate = 0.1; ``` #### 构建MPC模块 使用 Control System Toolbox 提供的功能来配置 MPC 控制器的关键属性,如预测时域、控制时域以及各状态之间的相对重要性的量化指标——即所谓的“权重”。 #### 添加自适应滑模控制逻辑 引入额外的状态观测器以估计系统的不确定性和外部扰动因素的影响程度。基于这些信息实时更新切换面函数 S(t),从而使得即使面对未知干扰也能维持稳定运行特性。 ```matlab function u = asm_controller(x, r, params) lambda = params.lambda; k = params.k; e = x - r; %误差计算 s = dot(params.c,e); % 切换面定义 sigma = abs(s)+lambda*sign(s); u = -(k * sign(sigma)); % 自适应律设计 end ``` #### 组合两种方法 将上述两个部分结合起来形成完整的闭环反馈回路。具体来说就是把来自上位机发出的目标轨迹作为输入信号传递给 MPC 单元求解最优路径后再传送给下级 ASM 调节单元完成最终输出。 #### 测试验证 最后一步是对整个架构进行全面测试评估其有效性。可以通过改变不同场景下的初始条件或者加入随机噪声等方式考察该混合方案能否有效应对各种情况的变化而不失稳态精度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

shejizuopin

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值