数学_使用舒尔补简化矩阵求逆

本文介绍了数学中的舒尔补概念及其在简化矩阵求逆中的应用。通过将矩阵化为上、下三角矩阵,然后利用舒尔补将2x2分块矩阵分解为对角矩阵,进一步求解矩阵的逆。详细步骤包括分块、舒尔补转换和对角矩阵求逆,参考自深蓝学院的VIO课程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 舒尔补概念

将矩阵化成上三角矩阵

将矩阵化成上三角矩阵,左乘 \begin{bmatrix} I & 0\\ -CA^{-1}& I \end{bmatrix},示例解方程如下:

 

将矩阵化成下三角矩阵

将矩阵化成上三角矩阵,左乘 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

惊鸿一博

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值