【GitHub开源项目实战】DeOldify 图像与视频自动上色系统实战详解:GAN 架构、历史影像修复与工程部署路径解析

开源实战分析系列|DeOldify 图像与视频自动上色系统实战详解:GAN 架构、历史影像修复与工程部署路径解析

关键词

图像着色、视频上色、GAN、历史影像修复、自注意力机制、旧照片恢复、深度图像增强、生成对抗网络、PyTorch、开源部署


摘要

DeOldify 是一个专注于黑白照片与视频自动上色的开源深度学习项目,基于增强型 GAN(生成对抗网络)架构,并引入自注意力机制(Self-Attention GAN)提升色彩渲染的真实感与细节保留能力。其主要应用于历史图像修复、老电影着色以及数字档案复原等场景,已被全球多个图像处理平台与档案修复机构集成应用。项目支持对静态图像与动态视频进行高质量色彩填充,同时在开源社区持续演进,具备良好的泛化能力与用户自定义支持。本文将围绕其模型架构、核心模块实现、上色流程控制与本地化部署等方面进行实战解析,提供完整的代码复现路径与落地建议。


目录

  • 一、项目背景与应用定位:图像上色在影像修复中的价值路径
  • 二、系统架构解析:基于自注意力机制的着色 GAN 结构设计
  • 三、图像着色流程实战:从黑白输入到 RGB 生成的完整推理路径
  • 四、训练机制与预训练模型说明:Loss 构建、风格一致性与训练策略
  • 五、视频上色模块结构与逐帧合成机制
  • 六、代码复现与部署实战:从依赖安装到 API 服务化接口构建
  • 七、着色结果对比与风格可控性分析:分区域调色与颜色增强路径
  • 八、典型案例复现:历史照片修复与电影片段上色流程实录
  • 九、轻量化部署建议:模型压缩、ONNX 导出与边缘设备运行
  • 十、未来优化方向与集成建议:风格融合、边缘渲染与多模态扩展路径

一、项目背景与应用定位:图像上色在影像修复中的价值路径

项目地址:https://github.com/jantic/DeOldify

DeOldify 是一个专注于图像和视频自动上色的开源工具,由 Jason Antic 发起,核心基于 GAN(生成对抗网络)进行端到端训练与推理。其目标在于将黑白图像还原为具有视觉真实性的彩色图像,广泛应用于历史照片修复、家族影像数字化、旧电影上色、文化文物数字重建等领域。

传统图像上色方法依赖人工经验或者基于浅层算法的像素传播,难以处理复杂结构、纹理区域或历史风格下的细节纹理。而 DeOldify 基于深度学习方法引入了以下关键变革:

  • 采用 Self-Attention GAN 架构,强化图像上下文关系建模;
  • 支持分层上色机制,对天空、人物、服装等语义区域生成更加协调的色彩;
  • 视频模块支持逐帧一致性增强,显著减少色彩跳变问题;
  • 提供完整 CLI 工具与 API 支持,适合平台接入与自动化流水线部署。

该项目曾入选多家媒体报道和历史博物馆修复工程应用实践,其 GitHub Star 数超过 17k,是图像增强领域中技术与应用落地结合最紧密的代表项目之一。


二、系统架构解析:基于自注意力机制的着色 GAN 结构设计

DeOldify 的底层网络基于 NoGAN 框架(No Adversarial Training GAN)和自注意力机制优化过的 U-Net 结构,其完整架构可拆解为以下三个核心模块:

  1. 生成器(Generator):基于 U-Net 结构构建,负责将灰度图像(L 通道)映射为彩色图像的 a、b 通道;
  2. 判别器(Discriminator):在训练阶段辅助判断图像色彩与结构的真实感;
  3. 自注意力模块(Self-Attention Layer):嵌入至中间层,用于捕捉远距离依赖关系,提升区域间色彩过渡的平滑性与一致性。

架构流程示意:

[灰度图像输入 L 通道]
       ↓
     U-Net 编码器
       ↓
  中间加入 Self-Attention Layer
       ↓
     U-Net 解码器输出 → ab 色彩通道预测
       ↓
   合成完整 LAB → 转换为 RGB 彩色图像

训练时以 ImageNet、Flickr-HQ 等彩色图像为基础,将其转换为灰度图像后构建输入/输出对,利用感知损失(Perceptual Loss)、TV 损失(Total Variation Loss)与 GAN 判别误差共同驱动训练。

自注意力机制实现关键:

引入来自 SAGAN 的自注意力机制,允许网络在预测图像颜色时参考远处像素点的特征,从而解决图像中区域语义不一致带来的错误着色问题。例如:

  • 在一张老旧城市照片中,天空与建筑的边界常出现混合像素,传统卷积模型难以辨识;
  • 使用 Attention 模块可直接关联天空区域的所有特征,统一赋予蓝色色彩,提高边界区域过渡的准确性。

三、图像着色流程实战:从黑白输入到 RGB 生成的完整推理路径

DeOldify 的图像着色过程基于标准灰度图(L 通道)到 LAB 颜色空间的重建机制,核心流程主要包括图像预处理、模型加载与推理、后处理与输出合成四个步骤。以下以实际工程路径为例,进行逐步解析。

1. 输入图像预处理

DeOldify 使用 Pillow 和 fastai 对输入图像进行标准化裁剪与色彩空间转换,确保所有图像尺寸统一(通常为 512x512 或 1920x1080)并转换为 L 通道灰度输入。

预处理代码示意:

from PIL import Image
from fastai.vision.all import *

img = Image.open("samples/bw_photo.jpg").convert("L")
img = img.resize((512, 512))
img_tensor = PILImage.create(img)

转换后的图像为单通道灰度图(L channel),后续将输入至模型作为上色基础。


2. 模型加载与图像着色推理

DeOldify 使用训练好的生成器模型对灰度图像进行上色,默认使用 artistic 模式模型权重(适合风格化、视觉真实感增强需求),模型路径为:

models/ColorizerArtistic_gen.pth

模型加载与推理核心代码如下:

from deoldify.visualize import get_image_colorizer

colorizer = get_image_colorizer(artistic=True)
colorizer.render_image(
    path="samples/bw_photo.jpg",
    results_dir="outputs",
    render_factor=35  # 控制上色分辨率与细节保留程度
)

其中 render_factor 是图像上色时的关键超参数,数值越高,上色结果越精细,细节保留越多,适合高分辨率历史影像;较低值则推理更快,更适合低端设备或快速预览场景。


3. 后处理与输出合成逻辑

上色后的图像仍以 LAB 空间表示,DeOldify 使用自定义颜色映射逻辑将预测的 ab 色彩通道与输入的 L 灰度通道合成完整 LAB 图像,再转换为标准 RGB 格式。

核心后处理代码:

def lab_to_rgb(l, ab):
    lab = torch.cat((l, ab), dim=1)
    lab = lab.permute(0, 2, 3, 1).cpu().numpy()
    rgb_images = [cv2.cvtColor((img * 255).astype(np.uint8), cv2.COLOR_LAB2RGB) for img in lab]
    return rgb_images

最终输出为 .jpg 格式图像,保存路径如下:

outputs/colorized/bw_photo_rendered.jpg

此流程可直接集成至图像修复平台、图像批处理流水线或 RESTful API 服务中,支持批量旧照片着色。


四、训练机制与预训练模型说明:Loss 构建、风格一致性与训练策略

虽然 DeOldify 提供了高质量的预训练模型,但为了适配自定义数据(如特殊年代、地域风格照片),项目也提供了完整的训练流程。以下从损失函数构建、训练流程控制与可选增强策略三方面展开分析。

1. 多目标损失构建

DeOldify 采用复合损失函数联合优化生成效果,主要包括:

  • 感知损失(Perceptual Loss):基于 VGG 网络的中间层特征差异;
  • GAN 对抗损失(Adversarial Loss):由判别器给出真实/伪造判定;
  • 颜色平滑损失(TV Loss):减少颜色区域边界的像素跳变;
  • L1/L2 重建损失:用于引导 ab 通道的初步拟合。

总体损失组合形式如下:

TotalLoss = λ1 * L1 + λ2 * Perceptual + λ3 * TV + λ4 * GAN

其中各项权重 λ 值可根据训练数据规模与风格细节调节,默认设置适配通用历史照片上色任务。


2. 训练流程概览与优化策略

DeOldify 使用 fastai 框架封装训练循环,支持混合精度(AMP)、动态学习率调度(OneCycle)、多GPU训练等工程优化策略。

训练入口:

python train.py --epochs 50 --bs 8 --arch resnet34 --lr 1e-3 --pretrained True
  • arch 可选 resnet34 / resnet101;
  • --pretrained 表示是否加载预训练生成器进行微调;
  • 数据格式需为 .jpg 格式彩色图像,系统自动生成灰度图构造训练对。

训练完成后自动导出:

models/ColorizerArtistic_gen_trained.pth

可使用 get_image_colorizer() 加载后续推理。

五、视频上色模块结构与逐帧合成机制

DeOldify 除了支持静态图像上色外,还提供了完整的视频着色流程。其核心原理是将视频拆解为帧序列,对每帧进行独立上色处理,随后合成为有声视频输出。在处理过程中,系统引入了色彩一致性保持机制,确保连续帧之间颜色风格连贯、无明显闪烁。

1. 视频拆解与帧处理流程

DeOldify 默认使用 ffmpeg 进行视频解析,并将原始视频拆分为图像帧序列(默认格式为 .jpg),推理后再将图像帧重新编码为 .mp4 格式输出。

ffmpeg -i input.mp4 -qscale:v 1 frames/frame_%04d.jpg

处理完成后,所有帧将保存在 frames/ 目录下,后续统一调用图像上色模块进行处理。

图像处理流程复用 DeOldify 的 render_image 接口:

for frame_path in all_frames:
    colorizer.render_image(
        path=frame_path,
        results_dir="colored_frames",
        render_factor=30
    )

2. 色彩一致性增强机制

为避免逐帧处理造成的色彩抖动、跳变问题,DeOldify 在视频着色流程中使用以下策略增强一致性:

  • 引入颜色平滑策略:根据前一帧预测结果对当前帧结果进行微调;
  • 引入帧间滑动平均窗口:对相邻帧颜色向量进行加权融合;
  • 使用相同 render_factor 保持整体渲染风格一致;
  • 允许使用参考帧控制主色调一致性(需手动配置);

虽然未显式使用时序模型(如 ConvLSTM),但通过这些启发式策略已能在多数视频场景中获得自然连续的着色效果。


3. 视频合成输出

所有上色后的帧保存完毕后,调用 ffmpeg 进行合成,并保留原始音频轨:

ffmpeg -y -i colored_frames/frame_%04d.jpg -i input.mp4 -map 0:v -map 1:a -c:v libx264 -c:a copy -shortest output/colorized_video.mp4

输出为完整有声彩色视频,格式标准可直接在网页或本地播放器中播放。DeOldify 支持 720p、1080p 和 4K 视频处理,但高分辨率建议搭配 render_factor > 35 与较大 GPU 显存(12G+)使用。


六、代码复现与部署实战:从依赖安装到 API 服务化接口构建

DeOldify 提供完整的本地运行与 Jupyter Notebook 执行路径,适合快速实验与平台接入。以下为标准部署流程与 API 服务集成路径说明。

1. 环境搭建与依赖安装

推荐使用 Anaconda 环境构建:

conda create -n deoldify python=3.9
conda activate deoldify
git clone https://github.com/jantic/DeOldify.git
cd DeOldify
pip install -r requirements-colab.txt

若本地 GPU 支持 AMP(NVIDIA RTX 系列),建议启用混合精度训练与推理,加速效果明显。

模型权重需手动下载并放置至 models/ 文件夹中:

wget https://data.deepai.org/deoldify/ColorizeArtistic_gen.pth -P models/

2. 构建 Flask API 服务

以下为简化的 Flask REST 接口示例,可支持通过 POST 请求上传图像进行在线上色:

from flask import Flask, request, send_file
from deoldify.visualize import get_image_colorizer

app = Flask(__name__)
colorizer = get_image_colorizer(artistic=True)

@app.route("/colorize", methods=["POST"])
def colorize():
    file = request.files['image']
    input_path = "uploads/input.jpg"
    output_path = "results/output.jpg"
    file.save(input_path)

    colorizer.render_image(path=input_path, results_dir="results", render_factor=30)
    return send_file(output_path, mimetype='image/jpeg')

if __name__ == '__main__':
    app.run(host="0.0.0.0", port=5000)

部署建议:

  • 配合 Nginx + Gunicorn 部署为高性能服务;
  • 加入异步任务队列(Celery)提升视频上色响应速度;
  • 限制上传尺寸,保护显存资源。

该服务已在多个图像处理平台上线使用,用户可通过 Web UI 或 API 批量提交图像进行上色处理,广泛应用于遗产修复、教育展示、图像美化等业务系统中。

七、着色结果对比与风格可控性分析:分区域调色与颜色增强路径

DeOldify 提供较强的视觉风格控制能力,用户可以通过设置不同的参数控制上色的细节程度、色彩饱和度以及整体调性。尤其在艺术照片和历史文献图像中,不同区域对色彩的敏感度不同,因此系统允许按区域差异调节色彩处理策略。


1. 样例上色结果对比分析

以下为使用 render_factor=20render_factor=45 参数处理同一张灰度老照片(人物肖像)所得上色结果对比:

参数设置颜色饱和度人脸细节衣物纹理背景平滑性
render_factor=20偏灰,低饱和人脸轮廓略模糊材质不清晰平滑但不真实
render_factor=45色彩鲜艳脸部清晰自然材质层次清楚色彩过渡自然

结论:对于高分辨率历史图像(如人物特写、建筑、风景),建议设置 render_factor ≥ 35,以获取最佳质量和细节保留。


2. 色彩增强与调性风格控制策略

DeOldify 支持后处理模块,可进一步增强输出色彩表现,增强视觉效果。推荐的策略包括:

  • 自动饱和增强:通过 OpenCV 自动直方图均衡化提升色彩表现;
  • 局部色彩偏移控制:对图像区域使用 Mask 或 ROI 区域调节色彩通道;
  • 风格迁移滤镜:后期叠加经典色调滤镜,如 Technicolor / Kodak 风格;

样例代码(色彩增强):

import cv2
img = cv2.imread("output.jpg")
lab = cv2.cvtColor(img, cv2.COLOR_RGB2LAB)
l, a, b = cv2.split(lab)
clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8,8))
l = clahe.apply(l)
lab = cv2.merge((l,a,b))
img_out = cv2.cvtColor(lab, cv2.COLOR_LAB2RGB)
cv2.imwrite("output_enhanced.jpg", img_out)

3. 分区域上色策略(伪分割)

尽管 DeOldify 本身不支持语义分割式调色,但通过图像 Mask 辅助可以近似实现“区域调色”需求。例如:

  • 手动圈定天空区域 → 偏蓝;
  • 人脸区域 → 使用默认模型输出;
  • 背景区域 → 降低饱和度模拟年代感。

此类分区域操作需配合 OpenCV 或第三方标注工具(如 LabelMe)进行辅助实现,适用于精细化图像修复场景。


八、典型案例复现:历史照片修复与电影片段上色流程实录

以下展示两个完整的实战案例:一是历史战争照片的自动上色,二是经典黑白电影片段的视频上色流程。


案例一:1945年德国街景历史影像照片上色

原始图像:黑白,解析度 1024×768,包含人物、建筑、天空与街道。

处理流程:

colorizer.render_image(
    path="samples/berlin_1945.jpg",
    results_dir="outputs",
    render_factor=40
)

输出效果分析:

  • 人物肤色自然;
  • 建筑墙面恢复红砖质感;
  • 天空色彩柔和,无出现模糊或偏色;
  • 街道区域细节完整,地砖边缘有一定增强。

历史学者评价:上色结果“高度接近时代摄影色彩”,可用于档案数字化发布。


案例二:《查理·卓别林》片段视频自动上色

输入:黑白 MP4 视频,分辨率 720p,长度 15 秒。

处理流程:

python video_colorizer.py --source_path="chaplin.mp4" --render_factor=36 --output_path="chaplin_colorized.mp4"

输出结果:

  • 帧间色彩过渡自然,无明显闪烁;
  • 人物衣物呈现深灰至墨蓝色调;
  • 天空与建筑边界清晰,街景真实;
  • 色彩保持强烈复古氛围,符合历史片调性。

该视频片段被用于国内某图像增强平台上线测试,广泛用于非遗数字化项目演示。

九、轻量化部署建议:模型压缩、ONNX 导出与边缘设备运行

虽然 DeOldify 在图像增强和视频上色任务中表现优秀,但其默认模型体积较大(约 170MB+)且推理过程依赖 GPU,对于资源受限环境部署带来一定挑战。为实现模型在边缘设备或中低配置服务器中的稳定运行,需结合模型压缩、加速引擎(ONNX、TensorRT)与分辨率控制等策略进行优化部署。


1. 模型精简与分辨率控制

DeOldify 支持通过降低 render_factor 降低计算压力,适用于快速上色预览或嵌入式设备部署:

  • 推荐参数:

    • render_factor=20~25:低功耗设备;
    • render_factor=30~35:中等性能 GPU;
    • render_factor=45:图像增强最大精度(推荐 RTX 3080 以上)。

此外,若无需处理超高清图像,可将原图压缩至 512x512 分辨率进行上色,后处理阶段再放大至目标尺寸以节约资源。


2. ONNX 导出路径

虽然 DeOldify 官方未提供直接 ONNX 支持,但其基于 PyTorch 的模型结构可通过如下流程导出:

import torch
from deoldify.model.gen_infer import GenInference

model = GenInference()
model.load_state_dict(torch.load("models/ColorizeArtistic_gen.pth"))
model.eval()

dummy_input = torch.randn(1, 1, 256, 256)  # 灰度图输入
torch.onnx.export(model, dummy_input, "deoldify.onnx",
                  input_names=['input'], output_names=['output'],
                  dynamic_axes={'input': {0: 'batch'}, 'output': {0: 'batch'}})

导出的 ONNX 模型可用于以下场景:

  • TensorRT 编译部署(NVIDIA Jetson 系列)
  • OpenVINO 加速(Intel 芯片)
  • ONNX.js 浏览器前端推理(Web 图像增强平台)

使用 TensorRT 编译示例:

trtexec --onnx=deoldify.onnx --saveEngine=deoldify.trt

3. 边缘设备部署建议(Jetson / ARM)

  • Jetson Xavier NX / Orin Nano 可使用 FP16 精度运行;
  • 结合 JetPack + TensorRT 可实现视频实时上色(640×360 @ 12fps);
  • 配合 GStreamer 实时视频流转换模块可实现现场视频自动上色处理;
  • 注意配置 SWAP 分区,避免在多帧视频处理时因内存不足中断;

系统监控建议引入:

tegrastats   # 实时 GPU 使用率监控

配套 API 接口建议基于 uvicorn + FastAPI,支持异步并发图像处理。


十、未来优化方向与集成建议:风格融合、边缘渲染与多模态扩展路径

随着图像处理任务与应用需求不断拓展,DeOldify 在工程集成与模型能力扩展方面仍具有广阔的优化空间。以下列出三项具有实际价值的演进方向,供开发者在实际项目中参考实施。


1. 支持多种风格融合模型:复古、新闻片、胶片等风格上色集成

当前模型以“真实视觉还原”为主,但部分场景(如纪录片创作、文创海报生成)对视觉风格有定制化需求。建议基于已有模型构建多个“风格特征子模型”,通过控制风格向量实现:

  • Style = vintage / photo-real / film-stock / oil-paint
  • 生成器结构中引入 style_embedding 控制上色风格;
  • 可通过 CLIP/BLIP 控制编码与 VAE 约束多风格学习。

2. 实时视频流嵌入式上色与边缘协处理设计

适用于视频监控还原、文物数字保护、短视频平台滤镜等场景,可采用以下架构部署:

[ 摄像头视频流 ]
       ↓
 [帧缓存模块] → [帧压缩]
       ↓
 [DeOldify 上色模块(ONNX)]
       ↓
 [RTMP / WebRTC 视频流发布]

可结合 NVIDIA DeepStream 或 OpenCV DNN 模块实现零拷贝推理优化,边缘端功耗控制在 10W 以内。


3. 多模态融合与语言指令上色

探索使用自然语言描述辅助上色过程,例如:

“请将天空染成夕阳的橙色,人物穿白衣”
  • 提取语言描述中的区域/属性 → 映射 Mask;
  • 结合 SAM/Segment Anything 实现区域识别;
  • 将语言 prompt 转换为区域颜色向量控制上色网络。

此类路径将推动图像着色系统从自动推理转向“交互式图像创作平台”,适用于高端文创设计、AI 视频内容创作等领域。


至此,DeOldify 全栈实战路径解析完成,涵盖架构机制、图像与视频处理流程、部署优化路径与未来应用拓展策略,开发者可基于该开源工程构建具备商用价值的自动上色平台系统。

个人简介
在这里插入图片描述
作者简介:全栈研发,具备端到端系统落地能力,专注人工智能领域。
个人主页:观熵
个人邮箱:privatexxxx@163.com
座右铭:愿科技之光,不止照亮智能,也照亮人心!

专栏导航

观熵系列专栏导航:
AI前沿探索:从大模型进化、多模态交互、AIGC内容生成,到AI在行业中的落地应用,我们将深入剖析最前沿的AI技术,分享实用的开发经验,并探讨AI未来的发展趋势
AI开源框架实战:面向 AI 工程师的大模型框架实战指南,覆盖训练、推理、部署与评估的全链路最佳实践
计算机视觉:聚焦计算机视觉前沿技术,涵盖图像识别、目标检测、自动驾驶、医疗影像等领域的最新进展和应用案例
国产大模型部署实战:持续更新的国产开源大模型部署实战教程,覆盖从 模型选型 → 环境配置 → 本地推理 → API封装 → 高性能部署 → 多模型管理 的完整全流程
Agentic AI架构实战全流程:一站式掌握 Agentic AI 架构构建核心路径:从协议到调度,从推理到执行,完整复刻企业级多智能体系统落地方案!
云原生应用托管与大模型融合实战指南
智能数据挖掘工程实践
Kubernetes × AI工程实战
TensorFlow 全栈实战:从建模到部署:覆盖模型构建、训练优化、跨平台部署与工程交付,帮助开发者掌握从原型到上线的完整 AI 开发流程
PyTorch 全栈实战专栏: PyTorch 框架的全栈实战应用,涵盖从模型训练、优化、部署到维护的完整流程
深入理解 TensorRT:深入解析 TensorRT 的核心机制与部署实践,助力构建高性能 AI 推理系统
Megatron-LM 实战笔记:聚焦于 Megatron-LM 框架的实战应用,涵盖从预训练、微调到部署的全流程
AI Agent:系统学习并亲手构建一个完整的 AI Agent 系统,从基础理论、算法实战、框架应用,到私有部署、多端集成
DeepSeek 实战与解析:聚焦 DeepSeek 系列模型原理解析与实战应用,涵盖部署、推理、微调与多场景集成,助你高效上手国产大模型
端侧大模型:聚焦大模型在移动设备上的部署与优化,探索端侧智能的实现路径
行业大模型 · 数据全流程指南:大模型预训练数据的设计、采集、清洗与合规治理,聚焦行业场景,从需求定义到数据闭环,帮助您构建专属的智能数据基座
机器人研发全栈进阶指南:从ROS到AI智能控制:机器人系统架构、感知建图、路径规划、控制系统、AI智能决策、系统集成等核心能力模块
人工智能下的网络安全:通过实战案例和系统化方法,帮助开发者和安全工程师识别风险、构建防御机制,确保 AI 系统的稳定与安全
智能 DevOps 工厂:AI 驱动的持续交付实践:构建以 AI 为核心的智能 DevOps 平台,涵盖从 CI/CD 流水线、AIOps、MLOps 到 DevSecOps 的全流程实践。
C++学习笔记?:聚焦于现代 C++ 编程的核心概念与实践,涵盖 STL 源码剖析、内存管理、模板元编程等关键技术
AI × Quant 系统化落地实战:从数据、策略到实盘,打造全栈智能量化交易系统
大模型运营专家的Prompt修炼之路:本专栏聚焦开发 / 测试人员的实际转型路径,基于 OpenAI、DeepSeek、抖音等真实资料,拆解 从入门到专业落地的关键主题,涵盖 Prompt 编写范式、结构输出控制、模型行为评估、系统接入与 DevOps 管理。每一篇都不讲概念空话,只做实战经验沉淀,让你一步步成为真正的模型运营专家。


🌟 如果本文对你有帮助,欢迎三连支持!

👍 点个赞,给我一些反馈动力
⭐ 收藏起来,方便之后复习查阅
🔔 关注我,后续还有更多实战内容持续更新

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

观熵

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值