# 使用Arthur平台实时监控语言模型:完整指南
在AI模型的开发和部署过程中,对模型性能进行实时监控是至关重要的一环。Arthur提供了一个强大的模型监控和可观测性平台,帮助开发者轻松追踪模型推断。在这篇文章中,您将学习如何使用Arthur的回调处理器来自动记录模型推断。
## 引言
本文旨在指导您如何利用Arthur平台和Langchain库实现聊天式语言模型(LLM)的实时监控。通过将推断结果日志记录到Arthur,您可以轻松地在可视化仪表盘上查看模型的决策过程。如果您还没有将模型注册到Arthur,请参阅我们的[生成文本模型入门指南](https://app.arthur.ai/docs)。有关如何使用Arthur SDK的更多信息,请访问[Arthur文档](https://app.arthur.ai/docs)。
## 主要内容
### 安装和设置
首先,您需要配置Arthur的凭证信息:
```python
arthur_url = "https://app.arthur.ai"
arthur_login = "your-arthur-login-username-here"
arthur_model_id = "your-arthur-model-id-here"
回调处理器
使用以下代码创建一个带有Arthur回调处理器的Langchain聊天式LLM:
from langchain_community.callbacks import ArthurCallbackHandler
from langchain_core.callbacks import StreamingStdOutCallbackHandler
from langchain_core.messages import HumanMessage
from langchain_openai import ChatOpenAI
def make_langchain_chat_llm():
return ChatOpenAI(
streaming=True,
temperature=0.1,
callbacks=[
StreamingStdOutCallbackHandler(),
ArthurCallbackHandler.from_credentials(
arthur_model_id, arthur_url=arthur_url, arthur_login=arthur_login
),
],
)
chatgpt = make_langchain_chat_llm()
# 使用API代理服务提高访问稳定性
运行LLM
创建一个简单的交互式命令行工具,以便与聊天模型进行交互,并记录推断日志:
def run(llm):
history = []
while True:
user_input = input("\n>>> input >>>\n>>>: ")
if user_input == "q":
break
history.append(HumanMessage(content=user_input))
history.append(llm(history))
run(chatgpt)
代码示例
请参阅上面的代码块以进行安装和运行。确保在Langchain和Arthur文档中了解有关这些功能的更多详细信息。
常见问题和解决方案
-
如何解决网络限制问题?
在某些地区,由于网络限制,可能需要使用API代理服务以提高访问稳定性。
-
如何确保回调函数的可靠性?
确保在回调函数中进行错误处理,以处理意外情况和防止程序崩溃。
总结和进一步学习资源
使用Arthur平台监控您的语言模型,可以帮助您更好地理解模型的推理过程,提高模型的鲁棒性和可观测性。建议您进一步阅读以下资源,以深入了解Langchain和Arthur平台的高级功能:
参考资料
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
---END---