【使用Arthur平台实时监控语言模型:完整指南】

# 使用Arthur平台实时监控语言模型:完整指南

在AI模型的开发和部署过程中,对模型性能进行实时监控是至关重要的一环。Arthur提供了一个强大的模型监控和可观测性平台,帮助开发者轻松追踪模型推断。在这篇文章中,您将学习如何使用Arthur的回调处理器来自动记录模型推断。

## 引言

本文旨在指导您如何利用Arthur平台和Langchain库实现聊天式语言模型(LLM)的实时监控。通过将推断结果日志记录到Arthur,您可以轻松地在可视化仪表盘上查看模型的决策过程。如果您还没有将模型注册到Arthur,请参阅我们的[生成文本模型入门指南](https://app.arthur.ai/docs)。有关如何使用Arthur SDK的更多信息,请访问[Arthur文档](https://app.arthur.ai/docs)。

## 主要内容

### 安装和设置

首先,您需要配置Arthur的凭证信息:

```python
arthur_url = "https://app.arthur.ai"
arthur_login = "your-arthur-login-username-here"
arthur_model_id = "your-arthur-model-id-here"

回调处理器

使用以下代码创建一个带有Arthur回调处理器的Langchain聊天式LLM:

from langchain_community.callbacks import ArthurCallbackHandler
from langchain_core.callbacks import StreamingStdOutCallbackHandler
from langchain_core.messages import HumanMessage
from langchain_openai import ChatOpenAI

def make_langchain_chat_llm():
    return ChatOpenAI(
        streaming=True,
        temperature=0.1,
        callbacks=[
            StreamingStdOutCallbackHandler(),
            ArthurCallbackHandler.from_credentials(
                arthur_model_id, arthur_url=arthur_url, arthur_login=arthur_login
            ),
        ],
    )

chatgpt = make_langchain_chat_llm()
# 使用API代理服务提高访问稳定性

运行LLM

创建一个简单的交互式命令行工具,以便与聊天模型进行交互,并记录推断日志:

def run(llm):
    history = []
    while True:
        user_input = input("\n>>> input >>>\n>>>: ")
        if user_input == "q":
            break
        history.append(HumanMessage(content=user_input))
        history.append(llm(history))

run(chatgpt)

代码示例

请参阅上面的代码块以进行安装和运行。确保在Langchain和Arthur文档中了解有关这些功能的更多详细信息。

常见问题和解决方案

  1. 如何解决网络限制问题?

    在某些地区,由于网络限制,可能需要使用API代理服务以提高访问稳定性。

  2. 如何确保回调函数的可靠性?

    确保在回调函数中进行错误处理,以处理意外情况和防止程序崩溃。

总结和进一步学习资源

使用Arthur平台监控您的语言模型,可以帮助您更好地理解模型的推理过程,提高模型的鲁棒性和可观测性。建议您进一步阅读以下资源,以深入了解Langchain和Arthur平台的高级功能:

参考资料

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

---END---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值