R WGCNA进阶

本文介绍了R语言中WGCNA模块的进阶应用,作者在深入学习后对参数设置和流程进行了调整,尽管数学基础的挑战依然存在,但已能理解部分核心概念。
摘要由CSDN通过智能技术生成

经过一段时间的沉淀,文章内容看了一两遍,才稍微懂得一些里面的含义,至于算法结构之类的还是有些不懂,数学不够好。

library(WGCNA)
options(stringsAsFactors = FALSE)
myData = read.table("new.txt", sep="\t", header=TRUE)
dim(myData)
names(myData)
datExpr = as.data.frame(t(myData[, -c(1)]))
names(datExpr) = myData$inputID
rownames(datExpr) = names(myData)[-c(1)]
gsg = goodSamplesGenes(datExpr, verbose = 3)
if (!gsg$allOK)
{
if (sum(!gsg$goodGenes)>0)
	printFlush(paste("Removing genes:", paste(names(datExpr)[!gsg$goodGenes], collapse = ", ")))
if (sum(!gsg$goodSamples)>0)
	printFlush(paste("Removing samples:", paste(rownames(datExpr)[!gsg$goodSamples], collapse = ", ")))
	datExpr = datExpr[gsg$goodSamples, gsg$goodGenes]
}
write.table(names(datExpr)[!gsg$goodGenes], file="Out/removeGene.xls", row.names=FALSE, col.names=FALSE, quote=FALSE)
write.table(names(datExpr)[!gsg$goodSamples], file="Out/removeSample.xls", row.names=FALSE, col.names=FALSE, quote=FALSE)
sampleTree = flashClust(dist(datExpr), method = "average") #根据样本表达量使用平均距离法建树
pdf(file = "Out/sampleClustering.pdf", width = 12, height = 9)
par(cex = 0.6)
par(mar = c(0,4,2,0))
plot(sampleTree, main = "Sample clustering", sub="", xlab="", cex.lab = 1.5, cex.axis = 1.5, cex.main = 2)
dev.off()
save(datExpr, file = "dataInput.RData")
library(WGCNA)
options(stringsAsFactors = FALSE)
ena
评论 32
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值