转录组测序技术和结果解读(十三)——WGCNA分析

WGCNA

WGCNA (weighted correlation network analysis) 是一款基于R语言的加权关联网络分析软件,可以实现将基因表达变化与表型差异的关联,从而挖掘在表型变化过程中发挥关键作用的核心基因或基因模块 (moudle)

WGCNA与其它类似分析软件的区别在于,其在构建基因共表达网络的过程中添加表型权重参数,同时使用无尺度聚类和动态剪切树的方式优化分类,以实现对数据准确、高效的分析。

分析的流程

WGCNA的分析原理及过程如下:

  1. 对数据进行预处理;
  2. 构建分层聚类;
  3. 将表达模式相似的基因组成模块;
  4. 研究某一个模块中相关基因的功能富集 (GO、KEGG);
  5. 计算各个模块与样本表型指标的相关性;
  6. 确定特定模块,分析其所包含基因间的相互作用网络关系;
  7. 寻找关键莫管中的关键基因。

分析要求

WGCNA基于不同样本间基因表达的相关性的构建共表达网络,因此,当样本数过低时,其相关性计算结果并不可靠,得到的共表达网络也并不准确。

进行WGCNA分析时,推荐的样本数如下:

  • 独立样本数≥8 (非重复样本) 时,可以考虑基于Pearson相关系数的WGCNA共表达网络的方法;
  • 样本数≥15
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

wangchuang2017

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值