WGCNA
WGCNA (weighted correlation network analysis) 是一款基于R语言的加权关联网络分析软件,可以实现将基因表达变化与表型差异的关联,从而挖掘在表型变化过程中发挥关键作用的核心基因或基因模块 (moudle)。
WGCNA与其它类似分析软件的区别在于,其在构建基因共表达网络的过程中添加表型权重参数,同时使用无尺度聚类和动态剪切树的方式优化分类,以实现对数据准确、高效的分析。
分析的流程
WGCNA的分析原理及过程如下:
- 对数据进行预处理;
- 构建分层聚类;
- 将表达模式相似的基因组成模块;
- 研究某一个模块中相关基因的功能富集 (GO、KEGG);
- 计算各个模块与样本表型指标的相关性;
- 确定特定模块,分析其所包含基因间的相互作用网络关系;
- 寻找关键莫管中的关键基因。
分析要求
WGCNA基于不同样本间基因表达的相关性的构建共表达网络,因此,当样本数过低时,其相关性计算结果并不可靠,得到的共表达网络也并不准确。
进行WGCNA分析时,推荐的样本数如下:
- 当独立样本数≥8 (非重复样本) 时,可以考虑基于Pearson相关系数的WGCNA共表达网络的方法;
- 当样本数≥15