注:本文部分内容及图片来自网络,如有侵权通知删除!
三相交流电:
- 三相交流电是由三个频率相同、电势振幅相等、相位差互差120°角的交流电路组成的电力系统。日常用电系统中的三相四线制中电压为380/220V,即线电压为380V;相电压则随接线方式而异:若使用星形接法,相电压为220v;三角形接法,相电压则为380V。
- 三相电压:每根相线(火线)与中性线(零线)间的电压叫相电压,其有效值用UA、UB、UC表示;相线间的电压叫线电压,其有 效值用UAB、UBC、UCA表示。因为三相交流电源的三个线圈产生的交流电压相位相差120°,三个线圈作星形连接时,线电压等于相电压的根号3倍。我们通常讲的电压是220伏,380伏,就是三相四线制供电时的相电压和线电压。我国日常电路中,相电压是220V,线电压是380V(380V≈√3*220V)。工程上,讨论三相电源电压大小时,通常指的是电源的线电压。如三相四线制电源电压380V,指的是线电压380V。三相发电机在并网发电时或用三相电驱动三相交流电动机时,必须考虑相序的问题,否则会引起重大事故,为了防止接线错误,低压配电线路中规定用颜色区分各相,黄色表示A相,绿色表示B相,红色表示C相。
负载的两种接法(Y-型接法,Δ-型接法)
(电机正转-表达函数):
U a = V m ∗ c o s ( ω t ) U b = V m ∗ c o s ( ω t − 2 3 π ) U c = V m ∗ c o s ( ω t + 2 3 π ) \begin{array}{l} Ua=Vm*cos(\omega t) \\ Ub=Vm*cos(\omega t - \frac{2}{3}\pi) \\ Uc=Vm*cos(\omega t + \frac{2}{3}\pi) \end{array} Ua=Vm∗cos(ωt)Ub=Vm∗cos(ωt−32π)Uc=Vm∗cos(ωt+32π)
(电机反转-表达函数):
U
a
=
V
m
∗
c
o
s
(
ω
t
)
U
b
=
V
m
∗
c
o
s
(
ω
t
+
2
3
π
)
U
c
=
V
m
∗
c
o
s
(
ω
t
−
2
3
π
)
\begin{array}{l} Ua=Vm*cos(\omega t) \\ Ub=Vm*cos(\omega t + \frac{2}{3}\pi)\\ Uc=Vm*cos(\omega t - \frac{2}{3}\pi) \end{array}
Ua=Vm∗cos(ωt)Ub=Vm∗cos(ωt+32π)Uc=Vm∗cos(ωt−32π)
Vm:表示电压的幅度;
t:表示时间;
ω:角速度ω=Φ/t=2π/T=2πf,角速度等于2π除以周期,也等于2π乘以频率,其中:Φ角度, t时间, T周期, f频率, π圆周率;
根据公式可以看出,三相电压是随时间变化的正弦波,相位差120°,如下图所示:
FOC控制中,有两种坐标转换,分别是clark变换和park变换:
- clark变换将abc坐标系转换为αβ坐标系。
- park变换将静止的αβ坐标系转换为旋转的dq坐标系。
逆变换: - iclark变换将αβ坐标系转换为abc坐标系。
- ipark变换将旋转的dq坐标系转换为静止的αβ坐标系。
αβ坐标系:α轴β轴相位差90°,如下图所示:
dq坐标系:dq坐标相对于定子是旋转坐标系,相对转子是静止坐标系(dq坐标旋转的角速度和转子的旋转角速度相同):
d轴方向与转子的磁链方向重和,又称为直轴;
q轴方向与转子的磁链方向垂直,又称为交轴;
电机功率P、转矩T、速度V 之间的关系:
功率=力·速度,表达公式:P=F·V
转矩(T)=扭力(F)·作用半径®, 推导出F=T/R
线速度(V)=2πR·每秒转速(n秒)
d轴:调节幅度(电机的转速);
q轴:调节相位(电机的转矩);
Clark Tranformation 3s-2s,clark转换公式:
[
U
α
U
β
]
=
m
⋅
∣
U
a
−
U
b
⋅
c
o
s
(
60
°
)
−
U
c
⋅
c
o
s
(
60
°
)
0
U
b
⋅
c
o
s
(
30
°
)
−
U
c
⋅
c
o
s
(
30
°
)
∣
=
m
⋅
[
1
−
1
2
−
1
2
0
(
3
)
2
−
(
3
)
2
]
⋅
[
U
a
U
b
U
c
]
\left[ \begin{matrix} U\alpha \\ U\beta \\ \end{matrix} \right] = m·\left| \begin{matrix} Ua&-Ub·cos(60°)&-Uc·cos(60°) \\ 0 &Ub·cos(30°) &-Uc·cos(30°) \end{matrix} \right|= m· \begin{bmatrix} 1& -\frac{1}{2}&-\frac{1}{2} \\ 0 & \frac{\sqrt(3)}{2} &-\frac{\sqrt(3)}{2} \end{bmatrix}⋅\begin{bmatrix} Ua \\ Ub \\ Uc\end{bmatrix}
[UαUβ]=m⋅∣∣∣∣Ua0−Ub⋅cos(60°)Ub⋅cos(30°)−Uc⋅cos(60°)−Uc⋅cos(30°)∣∣∣∣=m⋅[10−212(3)−21−2(3)]⋅⎣⎡UaUbUc⎦⎤
矩阵展开:
U
α
=
m
⋅
(
U
a
−
1
2
⋅
U
b
−
1
2
⋅
U
c
)
U
β
=
m
⋅
(
3
2
⋅
U
b
−
3
2
⋅
U
c
)
\begin{array}{l} U\alpha=m·(Ua-\frac{1}{2}·Ub-\frac{1}{2}·Uc) \\ U\beta=m·(\frac{\sqrt3}{2}·Ub-\frac{\sqrt3}{2}·Uc) \end{array}
Uα=m⋅(Ua−21⋅Ub−21⋅Uc)Uβ=m⋅(23⋅Ub−23⋅Uc)
若m=√(2/3),变换前后,功率不变。又称为:Concordia变换。
若m=2/3,变换前后,幅值不变,恒幅值。
将m=2/3代入式中得:
U
α
=
U
a
U
β
=
1
3
⋅
(
U
a
+
2
⋅
U
b
)
\begin{array}{l} U\alpha=Ua \\ U\beta=\frac{1}{\sqrt3}·(Ua+2·Ub) \end{array}
Uα=UaUβ=31⋅(Ua+2⋅Ub)
# Inverse Clark Transformation 2s-3s, iClark逆变换:
[
U
a
U
b
U
c
]
=
m
′
⋅
[
1
0
−
1
2
3
2
−
1
2
−
3
2
]
⋅
[
U
α
U
β
]
\begin{bmatrix} Ua \\ Ub \\ Uc \end{bmatrix} = m'· \begin{bmatrix} 1&0 \\ -\frac{1}{2} & \frac{\sqrt3}{2} \\ -\frac{1}{2}&-\frac{\sqrt3}{2} \end{bmatrix}· \begin{bmatrix} U\alpha \\ U\beta\end{bmatrix}
⎣⎡UaUbUc⎦⎤=m′⋅⎣⎢⎡1−21−21023−23⎦⎥⎤⋅[UαUβ]
矩阵展开:
U
a
=
m
′
⋅
(
U
α
)
U
b
=
m
′
⋅
(
−
1
2
⋅
U
α
+
3
2
⋅
U
β
)
U
c
=
m
′
⋅
(
−
1
2
⋅
U
α
−
3
2
⋅
U
β
)
\begin{array}{l} Ua=m'·(U\alpha)\\ Ub=m'·(-\frac{1}{2}·U\alpha+\frac{\sqrt3}{2}·U\beta)\\ Uc=m'·(-\frac{1}{2}·U\alpha-\frac{\sqrt3}{2}·U\beta) \end{array}
Ua=m′⋅(Uα)Ub=m′⋅(−21⋅Uα+23⋅Uβ)Uc=m′⋅(−21⋅Uα−23⋅Uβ)
若m′=√(2/3),变换前后,功率不变。
若m′=1,变换前后,幅值不变。
Park Transformation 3s-3r,park转换:
[
U
d
U
q
U
0
]
=
2
3
⋅
[
c
o
s
(
θ
)
c
o
s
(
θ
−
2
3
π
)
c
o
s
(
θ
+
2
3
π
)
−
s
i
n
(
θ
)
−
s
i
n
(
θ
−
2
3
π
)
−
s
i
n
(
θ
+
2
3
π
)
1
2
1
2
1
2
]
⋅
[
U
a
U
b
U
c
]
\begin{bmatrix} Ud \\ Uq \\U0\end{bmatrix} = \frac{2}{3}·\begin{bmatrix} cos(\theta)&cos({\theta-\frac{2}{3}\pi}) &cos(\theta+\frac{2}{3}\pi) \\ -sin(\theta) & -sin(\theta-\frac{2}{3}\pi)&-sin(\theta+\frac{2}{3}\pi)\\ \frac{1}{2}&\frac{1}{2}&\frac{1}{2} \end{bmatrix}· \begin{bmatrix} Ua\\Ub\\Uc \end{bmatrix}
⎣⎡UdUqU0⎦⎤=32⋅⎣⎡cos(θ)−sin(θ)21cos(θ−32π)−sin(θ−32π)21cos(θ+32π)−sin(θ+32π)21⎦⎤⋅⎣⎡UaUbUc⎦⎤
U
d
=
U
α
⋅
c
o
s
(
θ
)
+
U
β
⋅
s
i
n
(
θ
)
U
q
=
U
β
⋅
c
o
s
(
θ
)
−
U
α
⋅
s
i
n
(
θ
)
o
r
U
d
=
U
α
⋅
c
o
s
(
θ
)
+
U
β
⋅
s
i
n
(
θ
)
U
q
=
−
U
α
⋅
s
i
n
(
θ
)
+
U
β
⋅
c
o
s
(
θ
)
Ud=U\alpha·cos(\theta)+U\beta·sin(\theta) \\ Uq=U\beta·cos(\theta)-U\alpha·sin(\theta) \\ or \\ Ud=U\alpha·cos(\theta)+U\beta·sin(\theta) \\ Uq=-U\alpha·sin(\theta)+U\beta·cos(\theta)
Ud=Uα⋅cos(θ)+Uβ⋅sin(θ)Uq=Uβ⋅cos(θ)−Uα⋅sin(θ)orUd=Uα⋅cos(θ)+Uβ⋅sin(θ)Uq=−Uα⋅sin(θ)+Uβ⋅cos(θ)
inverse Park Tranformation 3r-3s,iPark逆转换:
[ U a U b U c ] = [ c o s ( θ ) − s i n ( θ ) 1 c o s ( θ − 2 3 π ) − s i n ( θ − 2 3 π ) 1 c o s ( θ + 2 3 π ) − s i n ( θ + 2 3 π ) 1 ] ⋅ [ U d U q U 0 ] \begin{bmatrix}Ua\\Ub\\Uc\end{bmatrix}= \begin{bmatrix} cos(\theta)&-sin(\theta)&1 \\ cos(\theta - \frac{2}{3}\pi) & -sin(\theta - \frac{2}{3}\pi) & 1 \\ cos(\theta + \frac{2}{3}\pi) & -sin(\theta+\frac{2}{3}\pi) &1 \end{bmatrix}⋅\begin{bmatrix} Ud\\Uq\\U0 \end{bmatrix} ⎣⎡UaUbUc⎦⎤=⎣⎡cos(θ)cos(θ−32π)cos(θ+32π)−sin(θ)−sin(θ−32π)−sin(θ+32π)111⎦⎤⋅⎣⎡UdUqU0⎦⎤
[ U α U β ] = [ c o s ( θ ) − s i n ( θ ) s i n ( θ ) c o s ( θ ) ] ⋅ [ U d U q ] \begin{bmatrix} U\alpha \\ U\beta \end{bmatrix} = \begin{bmatrix} cos(\theta)&-sin(\theta) \\ sin(\theta)&cos(\theta) \end{bmatrix}· \begin{bmatrix} Ud \\ Uq \end{bmatrix} [UαUβ]=[cos(θ)sin(θ)−sin(θ)cos(θ)]⋅[UdUq]
相关变量值:
- π=180°(平角), 2π=360°(周角),这里π表示弧度
- cos(60°) = 1/2 = 0.5
- cos(30°) = √3/2 ≈ 0.866025
- √3 = 1.7320508075688772935274463415059
- 2/3 = 0.66666666666666666666666666666667
- √(2/3) = 0.81649658092772603273242802490196
Python matplotlib仿真代码:
import numpy as np
import scipy as sp
import matplotlib.pyplot as plt
import matplotlib.pylab as plb
# 三相交流波形
Vm = 220 #电压幅度V
fHz=50 #频率
T=1/fHz #周期
Tn = 5 #显示n个周期的波形
t = np.linspace(0, T*Tn, 360*Tn) #时间t
theta = (2*np.pi*fHz) * t #电相角θ=2πf,随时间变化θ=ωt=2πf·t
Ua = Vm * np.cos((2*np.pi*fHz) * t) #U
Ub = Vm * np.cos((2*np.pi*fHz) * t - 2.0943)#(2/3)*np.pi) #V
Uc = Vm * np.cos((2*np.pi*fHz) * t + 2.0943)#(2/3)*np.pi) #W
#
Uo = (Ua+Ub+Uc) # (Ua+Ub+Uc)=0
plt.subplot(2,3,1)
plt.title('3-phase wave')
plt.title('Set Paramter(3-phase wave Ua/Ub/Uc)')
plt.plot(t, Ua, label='Ua')
plt.plot(t, Ub, label='Ub')
plt.plot(t, Uc, label='Uc')
plt.plot(t, Uo, 'b-.',label='U0')
plt.xlabel('ωt')
plt.ylabel('Vm')
plt.grid()
plt.legend()
# clark转换波形:
m = 2/3 #恒幅值
#m = np.sqrt(2/3) #恒功率
Ualpha = m * (Ua - (1/2)*Ub - (1/2)*Uc) #Uα
Ubeta = m * (np.sqrt(3)/2 * Ub - np.sqrt(3)/2*Uc) #Uβ
#Ualpha = Ua
#Ubeta = (1/np.sqrt(3))*(Ua + 2*Ub)
plt.subplot(2,3,2)
plt.title('Clark Tranformation(Ua/Ub/Uc to Uα/Uβ)')
plt.plot(t, Ualpha, label='Uα')
plt.plot(t, Ubeta, label='Uβ')
plt.xlabel('ωt')
plt.ylabel('Vm')
plt.grid()
plt.legend()
# park转换波形:
Ud = Ualpha*np.cos(theta) + Ubeta*np.sin(theta)
Uq = -Ualpha*np.sin(theta) + Ubeta*np.cos(theta)
plt.subplot(2,3,3)
plt.title('Park Tranformation(Uα/Uβ to Uq/Ud)')
plt.plot(t, Ud, 'r', label='Ud')
plt.plot(t, Uq, 'g', label='Uq')
plt.xlabel('ωt')
plt.ylabel('Vm')
plt.legend()
plt.grid()
# iPark
Udi = Ud-0 #调节幅度(电机的转速)
Uqi = Uq-0 #调节相位(电机的转矩)
#
plt.subplot(2,3,4)
plt.title('Set Paramter(Uq/Ud)')
plt.plot(t, Udi, 'r', label='iUd')
plt.plot(t, Uqi, 'g', label='iUq')
plt.xlabel('ωt')
plt.ylabel('Vm')
plt.legend()
plt.grid()
Ualphai = Udi *np.cos(theta) - Uqi * np.sin(theta)
Ubetai = Udi * np.sin(theta) + Uqi * np.cos(theta)
plt.subplot(2,3,5)
plt.title('iPark Tranformation(Uq/Ud to Uα/Uβ)')
plt.plot(t, Ualphai, label='iUα')
plt.plot(t, Ubetai, label='iUβ')
plt.xlabel('ωt')
plt.ylabel('Vm')
plt.legend()
plt.grid()
# iClark波形:
m = 1 #恒幅值
#m=np.sqrt(2/3) #恒功率
Uai = m * (Ualphai +(0*Ubetai))
Ubi = m * (-(1/2)*Ualphai + (np.sqrt(3)/2)*Ubetai)
Uci = m * (-(1/2)*Ualphai - (np.sqrt(3)/2)*Ubetai)
plt.subplot(2,3,6)
plt.title('iClark Tranformation(Uα/Uβ to Ua/Ub/Uc)')
plt.plot(t, Uai, label='iUa')
plt.plot(t, Ubi, label='iUb')
plt.plot(t, Uci, label='iUc')
plt.xlabel('ωt')
plt.ylabel('Vm')
plt.legend()
plt.grid()
# 显示图像
plt.show()