同源基因MEGA建树

一、文件准备

1.下载fasta文件或者你所研究的物种的蛋白质序列文件

从NCBI下载的或者通过提取DNA/RNA或送测序得到的数据

2.查阅文献或通过参考同源基因,去Pfam数据库下载相应的hmm结构文件,这里下载的是PF00248.hmm

3.下载hmmer软件

网盘:(后续所需的TBtools、MEGA也在网盘里)

链接:https://pan.baidu.com/s/1oqcn-lN19tkXUn5kjKdcFQ?pwd=xixh 
提取码:xixh

4.解压后把文件的安装路径加入到环境变量中

win11右键“此电脑”——“属性”——“高级系统设置”——“环境变量"

点击”确定“

5. hmm检索

打开cmd:“shift+鼠标右键”——”终端管理员“

cd 所有文件所在路径/ #建议把以上所有文件放在同一个文件夹里面,方便操作

 用记事本打开下载的hmm文件(PF00248.hmm),将f改为b

hmmsearch.exe -E 1e-5 .\PF00248.hmm .\protein.faa > out.txt  #1e-5为筛选值

将out.txt 中的ID号提取出来,保存为Excel文件或者txt文件

6.利用TBtools通过ID号把这些蛋白序列从物种的蛋白质序列中提取出来

Sequence Toolkit —— Fasta Tools —— Fasta Extract(Basic)

#注意复制ID号后把最后的空行删除

7.文件合并

用记事本打开保存的文件,全选复制

Ctrl+A  Ctrl+C

用记事本打开下载的超家族文件(.fasta文件)

Ctrl+V

二、多序列对比

”ALIGN"——“Edit/Build Alignment" ——"Create a new alignment"——"Protein"

点击”Edit“——"Insert Sequence From File"导入我们需要比对的序列(需拉到最后,检查有无空行,若有,鼠标右键——delete)

ctrl+A全选,点击 Muscle(肌肉图标,“W”指的是ClustalW算法,若发文章建议选择ClustalW算法)

"Data"—— "Save Session"保存序列比对的结果

三、构建系统发育树

"Data"——"Phylogenetic Analysis"进行系统发育分析

使用最大似然法建树前先进行测试,再选用模型

“MODELS”——“Find Best DNA/Protein Models(ML)..."(漫长的等待...)

结果如下:

”PHYLOGENY“——"Contrust/Test Maximun Likelihood Tree..."

(更加漫长的等待...) 

### 如何使用 MEGA 软件构建进化树 MEGA 是一种广泛应用于分子生物学研究的工具,用于分析 DNA 和蛋白质序列数据并构建系统发育树。以下是关于如何通过 MEGA 构建最大似然法(Maximum Likelihood, ML)进化树的具体方法。 #### 进入主界面并启动建树功能 在 MEGA 的主界面上,可以通过导航菜单选择 `Phylogeny` > `Construct/Test Maximum Likelihood Tree...` 来启动基于最大似然法的建树过程[^1]。此操作会引导用户进入设置窗口,在其中可以选择输入的数据集以及相应的模型参数。 #### 数据准备与模型选择 为了获得更精确的结果,建议预先加载已处理好的序列文件(如 FASTA 格式的核苷酸或氨基酸序列)。随后,在构建进化树,需确定适合当数据的最佳演化模型。具体法是在 Models 下找到 Find Best Models 功能,并依据 BIC 参数评估结果选取最优模型进行后续计算[^3]。 #### .mao 文件的作用及其生成方式 对于某些特定类型的分析来说,配置好合适的参数尤为重要。然而,在 Linux 平台下自动生成这些必要的 `.mao` 配置文件可能较为复杂;因此推荐先利用 Windows 版本下的 megacc 工具完成初始设定后再转移到其他环境中继续执行[^4]。 ```python # 示例 Python 代码片段展示读取fasta格式序列 from Bio import SeqIO def read_fasta(file_path): sequences = [] with open(file_path, 'r') as handle: for record in SeqIO.parse(handle, "fasta"): sequences.append(record.seq) return sequences sequences = read_fasta('example.fasta') print(sequences[:5]) # 打印五个序列作为示例 ``` 上述脚本展示了如何用 Biopython 库解析 fasta 文件的内容以便进一步导入到 mega深入分析。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值