工业相机——显微镜头/放大镜头

 

 校准尺,最小测量刻度为0.1mm

 上图为手机拍的看不清,放了一个网上找的图,校准的详细参数见下图

例如:物距为116mm的显微镜头,这种镜头没有景深,只能测镜头前端到物体116mm的物体 ,几乎没有景深,这个比较麻烦,需要严格保证镜头于被测物之间的距离。如果不能保证检测距离的话,靠前或靠后的位置呈像将会非常模糊。

         上图为加了同轴光源拍摄的校准尺的图像,可以看见拍的非常清楚,放大了很多倍。

        某70-200mm焦段的镜头标称放大倍率为1/6.5,是指该镜头在200mm焦段、能清晰成像的最短拍摄距离拍摄时,焦平面上的成像与被摄物体实际大小的比值为1/6.5。
        大多数相机镜头的放大倍数是小于1的,也就是说大多镜头的成像其实是缩小的。

显微镜的放大倍数是指什么

1、显微镜的放大倍数是指目镜与物镜放大倍数的乘积,放大的是物像的长度或宽度.如目镜的放大倍数是10倍,物镜的放大倍数是40倍,该显微镜的放大倍数═10×40═400倍。

2、总放大倍数有两种概念,一种是光学放大倍数,一种是数码放大倍数(只有连接成像设备时才会涉及到数码放大倍数)。

下图是一个关于放大倍率的效果图

 

上图参数为常见工业显微镜头的参数,请忽略我画的红框。

 

/*----------------------------------------------------------------------------------
// 作    者:    大胡子大叔
// 版权声明: 未经同意请勿转载,里面有几张图来自网络,如果侵权请联系删除
----------------------------------------------------------------------------------*/

### 微距相机标定方法概述 微距相机标定是一种用于精确测量物体尺寸的技术,通常涉及校正镜头畸变并计算像素与实际距离之间的关系。以下是关于微距相机标定的一些常见方法和技术细节: #### 1. 基于棋盘格图案的标定 传统的相机标定技术可以应用于微距摄影场景中。通过使用标准的棋盘格图案作为目标物,能够实现高精度的参数估计[^1]。 - **原理**: 利用已知几何结构的目标(如黑白相间的棋盘格),提取角点位置来建立世界坐标系到图像坐标的映射关系。 - **过程**: - 放置棋盘格模板在视场范围内; - 获取多张不同角度下的图片数据集; - 使用OpenCV或其他计算机视觉库执行自动化的特征检测和优化算法完成内外参求解。 ```python import cv2 import numpy as np criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001) objp = np.zeros((6*7,3), np.float32) objp[:,:2] = np.mgrid[0:7,0:6].T.reshape(-1,2) # Arrays to store object points and image points from all the images. objpoints = [] # 3d point in real world space imgpoints = [] # 2d points in image plane. for fname in filenames: img = cv2.imread(fname) gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) ret,corners=cv2.findChessboardCorners(gray,(7,6),None) if ret==True: objpoints.append(objp) corners2 = cv2.cornerSubPix(gray,corners,(11,11),(-1,-1),criteria) imgpoints.append(corners2) ret,matrix,dist,rvecs,tvecs = cv2.calibrateCamera(objpoints,imgpoints,gray.shape[::-1],None,None) ``` 上述代码片段展示了如何利用Python中的OpenCV库来进行基本的相机标定操作[^2]。 #### 2. 非传统方法——亚像素级精确定位 对于极高放大倍率的情况,可能需要采用专门设计的小型化测试卡或者显微镜载玻片上的刻度线阵列代替常规的大尺寸棋盘格板[^3]。 这种情况下需要注意的是: - 测试样本的选择应尽可能接近最终应用场景的实际条件; - 考虑光源均匀性和环境光干扰等因素的影响; --- #### 参考问题扩展思考方向
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大胡子大叔

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值