使用LoRA 对千问70B模型进行微调

要使用 LoRA 对已经下载的模型进行微调,可以通过 PEFT(Parameter-Efficient Fine-Tuning)库来实现。以下是具体的步骤。

1. 安装必要的库

确保你已经安装了 transformerspeft(用于 LoRA 微调)库:

pip install transformers peft

2. 加载模型和配置 LoRA 微调

下面的代码将展示如何加载已经下载的模型,并在 LoRA 配置下进行微调。

from transformers import AutoModelForCausalLM, AutoTokenizer, TrainingArguments, Trainer
from peft import LoraConfig, get_peft_model
from datasets import load_dataset

# 加载模型和分词器
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-72B-Chat", trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen-72B-Chat", trust_remote_code=True)

# 配置 LoRA 微调
lora_config = LoraConfig(
    r=8,                # LoRA 矩阵的秩(可以调整以适应显存)
    lora_alpha=16,      # LoRA 层的缩放因子
    target_modules=["q_proj", "v_proj"],  # LoRA 目标层,可以根据模型结构调整
    lora_dropout=0.1,   # Dropout 概率,防止过拟合
    bias="none"         # 设置为 "none" 不引入额外的偏置项
)

# 将模型转换为 LoRA 微调模型
model = get_peft_model(model, lora_config)

# 打印模型层,确认 LoRA 层是否成功添加
model.print_trainable_parameters()

3. 准备数据集

可以选择开源数据集或自定义数据集。这里以 wikitext 数据集为例:

# 加载示例数据集
dataset = load_dataset("wikitext", "wikitext-2-raw-v1", split="train")

# 定义数据预处理函数
def preprocess_function(examples):
    return tokenizer(examples["text"], padding="max_length", truncation=True, max_length=512)

# 预处理数据集
tokenized_dataset = dataset.map(preprocess_function, batched=True)

4. 配置训练参数

设置微调的训练参数,如 batch size、学习率、epoch 等。

training_args = TrainingArguments(
    output_dir="./lora_finetuned_qwen",  # 输出路径
    per_device_train_batch_size=1,       # 每个 GPU 上的 batch size
    gradient_accumulation_steps=8,       # 梯度累积步数
    num_train_epochs=3,                  # 训练轮次
    learning_rate=2e-4,                  # 学习率
    fp16=True,                           # 启用混合精度
    logging_steps=10,                    # 日志打印间隔
    save_steps=100,                      # 模型保存间隔
    save_total_limit=2,                  # 最多保存模型数量
)

5. 开始训练

使用 Trainer 进行微调。

trainer = Trainer(
    model=model,
    args=training_args,
    train_dataset=tokenized_dataset,
)

# 开始训练
trainer.train()

6. 保存微调后的模型

训练完成后,将微调后的模型保存到指定的文件夹中。

model.save_pretrained("./lora_finetuned_qwen")
tokenizer.save_pretrained("./lora_finetuned_qwen")

7. 加载和推理

微调完成后,可以加载微调后的模型并进行推理。

from transformers import AutoModelForCausalLM, AutoTokenizer

# 加载微调后的模型
model = AutoModelForCausalLM.from_pretrained("./lora_finetuned_qwen")
tokenizer = AutoTokenizer.from_pretrained("./lora_finetuned_qwen")

# 进行推理
input_text = "Your prompt here"
inputs = tokenizer(input_text, return_tensors="pt")
outputs = model.generate(**inputs)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))

总结

这个流程中,LoRA 微调的关键是通过 PEFT 库对模型的特定层(如 q_projv_proj)进行部分参数化微调,以降低显存消耗。

### 使用LoRA技术微调语言模型的最佳实践 #### 配置文件与工具选择 为了简化配置过程并有效管理不同类型的调整,推荐使用像Ludwig这样的框架。该框架支持多种以大语言模型(LLM)为中心的任务,并采用YAML文件来定义所有必要的参数[^2]。 ```yaml model_name: mistral-7b task_type: adapter_finetuning epochs: 10 hyperparameters: batch_size: 32 quantization_config: null adapter_configs: lora_rank: 16 lora_alpha: 16 lora_dropout: 0.1 target_modules: ["q", "v"] ``` 这段代码展示了如何为Mistral 7B模型创建一个基本的LoRA微调配置文件。其中设置了`lora_rank`, `lora_alpha`, 和 `lora_dropout` 参数以及目标模块的选择。对于较小规模的数据集或初步试验来说,这是一个合理的起点[^4]。 #### 调整rank和target modules 针对不同的模型大小有不同的建议: - **小于7B参数量的模型**: 推荐从rank=16至32之间选取,并将alpha设为相同范围内的值;同时应至少覆盖query和value矩阵作为初始尝试。 - **介于7B到70B之间的较大模型**: 可以降低rank至8~16区间内,并相应减少alpha值;初期仅需关注query和value部分即可。 - **超过70B的大规模预训练模型**: 此类情况下rank可进一步减小到4~8,而alpha也保持在同一水平上;同样先处理query和value两个方面。 #### 学习率的选择 合理设定学习率至关重要。通常,默认的学习率为2e-4是一个不错的起始点。然而,在实际应用中应当依据具体情况灵活调整这一数值。可以通过实验法或是编写脚本来动态计算最优解[^5]。 #### Dropout的应用 为了避免过拟合现象的发生,适当引入Dropout机制是有益处的。一般而言,默认设置下的drop rate为0.1较为适宜。当面临较大的数据集合时,则可以根据实际情况考虑是否保留此操作。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

MonkeyKing.sun

对你有帮助的话,可以打赏

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值