从零实现Agent智能体配置使用(Ragflow)


1. 创建智能体

在这里插入图片描述

2. 配置智能体

在这里插入图片描述

2.1 配置问题识别

在这里插入图片描述

2.2 配置问题分类

在这里插入图片描述

2.3 不同问题进行单独配置

当前模板默认带了四类问题:搜索产品信息、客户抱怨、闲聊、咨询,分别配置大模型,尤其关于产品信息的配置,除了大模型还需要配置对应知识库
在这里插入图片描述

2.4 保存Agent

在这里插入图片描述

3. 体验效果

运行智能体
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

### RAGFlow Agent 的介绍 RAGFlow (Retrieval-Augmented Generation Flow) 是一种结合检索增强生成的方法来处理复杂对话任务的技术。通过集成外部知识库,使得AI代理能够更加精准地理解和回应用户的查询[^1]。 具体来说,在面对特定领域的问题时,RAGFlow不仅依赖于预训练的语言模型本身所携带的知识,还会动态地从指定的数据源中提取最新、最相关的信息作为补充材料。这种方式有效地解决了传统基于纯文本生成方法可能存在的时效性和准确性不足的问题。 ### 实现方式 为了实现这一目标,通常会采用如下架构: - **数据索引模块**:负责构建并维护用于快速查找相关信息片段的向量数据库。 - **检索器组件**:当接收到用户输入后,该部分工作是识别其中的关键概念并将它们转化为可搜索的形式;接着利用相似度匹配算法从未知文档集合里挑选出若干候选答案。 - **生成器单元**:接收来自检索阶段的结果以及原始请求描述,经过内部逻辑推理过程形成最终回复内容。 ```python from transformers import RagTokenizer, RagRetriever, RagSequenceForGeneration tokenizer = RagTokenizer.from_pretrained("facebook/rag-token-nq") retriever = RagRetriever.from_pretrained("facebook/rag-token-nq", index_name="exact", use_dummy_dataset=True) model = RagSequenceForGeneration.from_pretrained("facebook/rag-token-nq", retriever=retriever) input_dict = tokenizer.prepare_seq2seq_batch( ["What is the capital of France?"], return_tensors="pt" ) generated = model.generate(input_ids=input_dict["input_ids"]) print(tokenizer.batch_decode(generated, skip_special_tokens=True)) ``` 这段代码展示了如何加载预训练好的RAG模型,并针对给定问题执行端到端的回答生成操作。 ### 应用场景 这种类型的Agent特别适合应用于那些需要频繁更新专业知识或者涉及大量事实性陈述的任务环境中,比如客户服务聊天机器人、医疗咨询助手或是法律文书撰写工具等。它能够在保持较高响应质量的同时减少人工干预成本,提高工作效率和服务水平[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

具身小站

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值