【2023新书】超图计算,Hypergraph Computation

该书探讨了超图计算理论和方法,强调其在处理复杂关系数据中的优势,如计算机视觉和分子科学等领域。超图计算利用超图表达高阶关联,适用于处理两两关系无法充分描述的问题,书中涵盖了超图建模、结构演化、神经网络及各领域应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

cebee80adc3f61595e0e16751eccb3c4.png

来源:专知
本文为书籍介绍,建议阅读5分钟
这本开放获取的书籍讨论了超图计算的理论和方法。

2fe01be8a04ddcc7691c75094da871ab.png

许多数据之间的底层关系可以用图表来表示,例如在计算机视觉、分子化学、分子生物学等领域。在过去的十年中,人们开发了基于图的学习和神经网络方法来处理这类数据,它们特别适合处理关系学习任务。然而,在许多实际问题中,我们关心的对象之间的关系比两两之间的关系更复杂。简单地将复杂的关系压缩为两两的关系必然会导致信息的丢失,这些信息对于学习任务来说可以预期是有价值的。

超图作为图的一种延伸,已经显示出与图相比在建模复杂关系方面的优越性能。近年来,超图相关的AI方法的研究越来越受到欢迎,这些方法已经被用于计算机视觉、社交媒体分析等。我们将这些尝试总结为一种新的计算范式,称之为超图计算,其目标是使用超图来表述数据底层的高阶关联,然后针对不同的应用在超图上进行语义计算。这本书的内容包括超图计算范式、超图建模、超图结构演化、超图神经网络以及超图计算在不同领域的应用。我们在这本书中进一步总结了超图计算的近期成就和未来的发展方向。

https://link.springer.com/book/10.1007/978-981-99-0185-2

5af190fbab10b02fee4336695389964a.png

c8cf474226581159ca0ff354d2277e6f.png

### 超图 (Hypergraph) 数据结构 超图是一种扩展了传统图模型的数据结构,在这种结构中,一条边(称为超边)能够连接任意数量的顶点[^1]。这意味着相比于标准图中的每条边仅能连接两个节点的情况,超图提供了更为灵活的关系表示能力。 具体来说,一个有向超图允许定义从一组源节点指向另一组目标节点的复杂依赖关系。这使得超图非常适合用于描述多对多的关系模式以及更复杂的交互场景。 #### 应用场景 ##### 复杂网络分析 在社交网络或其他类型的大型互联体系里,利用超图可以更好地捕捉实体间的群体互动特性而不是简单的双边联系。例如研究学术合作网时,一篇论文可能由多位作者共同完成;此时采用超图来表达这些多重协作就显得尤为恰当[^4]。 ##### 推荐系统 通过引入超图的概念,推荐算法可以在考虑物品之间潜在关联的基础上做出更加精准的商品建议。比如电影推荐平台不仅关注用户观看历史记录之间的相似度,还会考察不同影片所涉及演员、导演等要素构成的小团体特征,从而实现跨领域个性化服务提供[^3]。 ##### 生物信息学 基因调控路径往往涉及到多个蛋白质分子的同时作用,因此借助于超图可以帮助科学家们解析细胞内部错综复杂的信号传导机制,并进一步探索疾病发生发展的机理[^2]。 ```python from hypergraph import DirectedHypergraph # 创建一个新的有向超图实例 H = DirectedHypergraph() # 添加一些顶点到超图中 vertices = ['A', 'B', 'C'] for v in vertices: H.add_vertex(v) # 定义并加入几条超边 hyperedges = [ ('e1', {'tail': ['A'], 'head': ['B']}), ('e2', {'tail': ['B'], 'head': ['C']}), ('e3', {'tail': ['A', 'B'], 'head': ['C']}) ] for name, edge_dict in hyperedges: H.add_hyperedge(name, **edge_dict) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值