CVPRW2021中的事件相机研究(下)

本文首发于公众号:【事件相机】,CVPRW2021中的事件相机研究(下)

CVPR Workshop on Event-based Vision是围绕事件相机的专题研讨会,2021年是第三届由CVPR主办,第一届为ICRA2015,第二届在CVPR2019。目前看来是隔年一次。本次CVPRW涉及论文共14篇,本文介绍下半部分。

Image Reconstruction from Neuromorphic Event Cameras using Laplacian-Prediction and Poisson Integration with Spiking and Artificial Neural Networks [1]

本文又是关于重建,但采用了两阶段的神经网络。第一个神经网络做Laplacian预测,第二个做基于Laplacian图的图像重建,极大地减少了网络参数(仅200个)。

简单介绍下重建方法的发展历程,总的来说是从传统方法到深度学习方法。最初比较经典的工作室kim[A1]在相机跟踪时通过泊松积分重建了全景图,紧接着有大量基于Laplacian图泊松重建的方法。之后深度学习的方法取得了不错的效果,典型代表是E2VID[A2]系列。
在这里插入图片描述

这篇文章的思路如上图,首先从event frame到Laplacian图是由一个CNN完成,得到L后通过泊松积分得到完整图像。泊松积分由一个SNN实现。作者修改了CNN为Spiking CNN,进一步降低了参数量。优化的目标函数主要为三部分:绝对灰度值误差、结构相似性误差[A3]和Edge Loss[A4]。前两个是learning-based的重建常用的损失函数,有的方法还有时间一致性损失以保证视频的连贯性。

Detecting Stable Keypoints from Events through Image Gradient Prediction [2]

这篇文章的思路很有趣:重建梯度图比重建完整图像理论上容易很多,那我直接在梯度图上进行关键点跟踪。文章采用一个RNN网络从event预测梯度图,之后直接在梯度图上提取Harris。网络训练的目标函数是传统图像的Sobel梯度和重建梯度的L1误差。

在这里插入图片描述

这篇文章启发我们,是不是有些工作用梯度就可以解决,就可以不用完整图像了。

Spike timing-based unsupervised learning of orientation, disparity, and motion representations in a spiking neural network [3]

基于SNN的视差、运动等。SNN不懂,这文章就不展开了。

Feedback control of event cameras [4]

这篇文章的一作是Tobi Delbruck(INI组带头人、事件相机发明人、iniVation董事),居然是大佬的一作,那肯定很有深度。本文研究的是“事件相机参数的反馈控制”,并不是控制别的东西,而是反馈调节相机的参数。

在这里插入图片描述

文章详细介绍了相机的参数影响因素,包括偏置电流bias、对比度阈值contrast threshold、光感受器带宽、不应期refractoryperiod等。并提出了事件频率、阈值控制、不应期调整、带宽调整信噪比等方法,有大量实测数据的图表。强烈建议想了解事件相机硬件细节的朋友,多看一些Tobi自己的(主要是一作的)文章,一般都有非常详细的数据。

我看到这篇文章还是很激动的,应该是Tobi这边想把一些自动调参的功能做到片上或板卡,减少用户调参的工作。我也调过CeleX和Prophesee的参数,真的感觉怎么调都调不好。

DVS-OUTLAB: A Neuromorphic Event-Based Long Time Monitoring Dataset for Real-World Outdoor Scenarios [5]

DVS-OUTLAB数据集,户外场景长时间的监控数据,有标签可用于训练任务。采用CeleX4录制事件和图像,在传统图像提取目标标注到事件数据上。并分析了温度对噪声的影响。
在这里插入图片描述

很早之前有朋友问过我,DVS能不能做雨滴的检测与清除,当时还查了下只能查到类似于斑点跟踪(blob tracking)一类的方法,learning-based没有,主要原因是没有数据集。或许这个数据集可以提供一部分下雨的数据。

数据集网站:http://dnt.kr.hsnr.de/DVS-OUTLAB/

Live Demonstration: Incremental Motion Estimation for Event-based Cameras by Dispersion Minimisation [6]

Live Demo是workshop中常见的环节,我没有参加过,但感觉应该是现场展示一些功能。这篇文章主要是为了表明:采用他们之前提出的一种增量式处理方法[A5],可以实时地做运动估计。
在这里插入图片描述

v2e: From Video Frames to Realistic DVS Events [7]

首先在这里解释下仿真器(Emulator)和模拟器(Simulator)严格来讲是有区分的,事件相机这边Simulator和Emulator都出现过。但我觉得叫“仿真”顺口,所以一律说成“仿真器”。

本文研究从video到event的仿真。说到仿真,大家最熟悉的应该是ESIM[A6],在此之前还有Event Camera Dataset andSimulator[A7],之后还有vid2e[A8],以及这篇提到的v2e。那么这些仿真有什么区别呢?当然肯定是“原来越真”。

我们先从[A7]开始,它只是一个最基本的仿真,在两个frame之间做差分,如果亮度超过阈值,则生成一个event,非常naïve的方法。

在这里插入图片描述

图:左侧为[A7]的采样,和frame同步;右侧为ESIM[A6],自适应频率且和frame频率无关

ESIM[A6]主要的改进有:动态采样频率(变化快的地方采样更快)使得事件变得异步,而不是基于frame;同时可以增加一些简单的噪声例如对比度阈值的高斯噪声。整个仿真器是基于ROS下的,需要设定仿真场景。

v2e[A8],是直接从video生成event,为的是充分利用当前大量的视频公开数据集,弥补event实拍数据不足的问题,首先对video进行上采样,之后利用了ESIM生成event。

在这里插入图片描述
图:v2e[A8]的框架

本文的作者有Tobi,仿真也加入很多硬件特性,包含了不同光照条件下运动模糊(这个问题比较复杂,可以简单理解为环境光强度不同时,同一个物体的边缘清晰度会不同)、延迟、光感受器带宽限制、阈值误差、热像素噪声、暗电流、时间戳噪声等因素,这些是之前的仿真完全没有考虑的。仿真结果见下图。
在这里插入图片描述
图:v2e仿真结果,可以看到在亮暗不同环境下,仿真结果和真实数据很像

小结:可以看到,仿真这块主要的几个工作都是ETH这边,[A6-8]这几个工作是RPG组做的,本文的v2e是INI组做的。他们确实在引领行业发展。

总结

CVPRW包含的工作很多,从底层硬件、到软件算法和数据集,还有偏向生物的相关研究,确实是事件相机的一场盛会。希望大家今后多多关注。


公众号后台回复:CVPRW2021,下载本文介绍的论文。

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值