1. 摘要
事件相机与传统视觉相机的数据输出不一致, 因此需要转换处理模式.
EMVS优雅地利用事件相机的两个固有属性:
- 天然提供几何边缘信息;
- 提供连续的数据测量信息;
本文的算法利用上述两个特性,在已经事件相机的运动轨迹下,能够给出精确地的, 中稠密深度地图, 且不要求任何的数据关联和强度估计.
我们的算法是非常有效的,能够在CPU上实时处理.
2.Event-based Multi-View Stereo && MVS
-
基于事件相机的深度估计
- 仅考虑单个相机
- 不要求仿真事件观测
我们能够在不解决数据关联的情况下, 完成深度估计.
-
传统MVS与EMVS的区别
- EMVS必须考虑稀疏和异步的事件属性;
- EMVS要求事件相机一直处于运动状态;
- EMVS中相机的输出就是一种强度边缘, 所以EMVS的输出就是一种3dMap
基于MVS的3D环境估计去描述EMVS的环境恢复方法.
-
传统MVS与EMVS获取深度图的区别(DSI)
DSI -- 视差空间图像