R语言 | GEO数据库下载GSE基因芯片 以及表达矩阵和临床信息的提取

目录

1.载入R包

2.利用AnnoProbe下载GEO数据库中的数据

3.提取表达矩阵和临床信息

4.输出文件


1.获得GEO数据库中的数据

下面以GSE14520数据系为例:

获得GEO数据库中的数据总体上分为两种办法:1.从GEO数据库中下载;2.用R包下载

(1)从GEO数据库中下载

进入GEO网站,找到对应的Series Matrix File(s)即表达矩阵进行下载,保存到本地进行加载。

 在R中打开,由于read.table之后的表达矩阵与getGEO之后的有一定出入,需要处理一下。

a1<-read.table("GSE76275_series_matrix.txt.gz",sep="\t",quote = "",
               fill=T,comment.char = "!",header=T)
rownames(a1)<-a1[,1] #把第一列的值变为行名
a1<-a1[,-1] 

(2)用R包下载

用R包下载GSE芯片数据有两种方法:使用AnnoProbe包或者GEOquery包

方法一:利用AnnoProbe包

gset=AnnoProbe::geoChina('GSE14520')

tips:AnnoProbe包只能用于下载GEO中的arry数据,无法下载RNAseq类型的GSE。如果下载的GSE是RNAseq类型,AnnoProbe会报错。

 方法二:利用GEOquery包中的getGEO函数

gset <- getGEO("GSE14520",
               GSEMatrix =TRUE
               AnnotGPL=TRUE ,)

AnnotGPL:关于是否使用注释GPL信息默认为False的布尔值。这些文件很好用,因为它们包含定期从Entrez Gene重新映射的最新信息。但是,它们并不适用于所有GPLS;通常,它们仅适用于GDS引用的GPLs。所以有时候我们需要单独下载处理,其实就是用于探针注释。

GSEMatrix:告知GEO查询是否使用GEO中的GSE系列矩阵文件的布尔值。

2.提取表达矩阵和临床信息

exprSet <- data.frame(exprs(gset[[1]]))  #exprs用于提取表达矩阵信息
pdata<-pData(exp)  #pData用于提取临床信息

gset[[1]] 的意思是,从gset这个对象中提取第一列数据。也就是提取了下图中$GSE16956_series_matrix.txt.... 这一列的数据

[[ ]]这个语法有点类似于$,都是用来提取串列的。只不过[[]]可以提取list,而$只能提取dataframe

注意: 

如果你的GSE只有一个GPL,那么从gset中就仅含有一列数据,也就是说gset[[1]]就能把这个GSE所有的数据提取出来。

但如果你的GSE只有两个GPL,那么从gset中就有两列数据,gset[[1]]只能提取该GSE中一个GPL,不注意这点就会遗漏掉另一个GPL的数据。所以,这种情况要使用两行代码分别提取两个GLP的数据。

expMatrix1 <- exprs(gset[[1]])#提取第一个平台的表达矩阵
expMatrix2 <- exprs(gset[[2]])#提取第二个平台的表达矩阵
expMatrix <- cbind(expMatrix1, expMatrix2)#两个表达矩阵合并为一个总矩阵
pdata1 <- pData(gset[[2]])#提取第一个平台的临床数据
pdata2 <- pData(gset[[1]])#提取第二个平台的临床数据

那么如何判断你下载的这个GSE是有几个GPL呢?很简单,如果包含了两个或者多个GPL,你可以在RStudio右上角的环境变量中的”gset“后面的括号里看到”2 elements“的字样

2个GLP
含有2个GPL的gset

如果只含有一个GPL,则不会显示括号,仅显示”Large ExpressionSet“的字样

含有2个GPL的gset

或者你也可以通过View(gset)语法来查看:

含有1个GPL的GSE

含有2个GPL的GSE

3.输出文件

最后将数据框输出为csv文件,这个时候如果直接用write.table()函数的话,会造成列名左移的情况,解决办法参见我之前的文章(9条消息) R语言 | 导出数据框,会出现第一行左移一位的问题,解决办法如下_tianyuu1的博客-CSDN博客https://blog.csdn.net/tianyuu1/article/details/128105158


更多教学请关注:

👉🏻公众号:LN生物笔记👈🏻

👉🏻知乎:小宇👈🏻

### 使用R语言导入生物数据的方法 #### 安装必要的包 为了高效地处理分析生物数据,在开始之前应确保已安装并加载了所需的R包。对于单细胞测序数据,推荐使用Bioconductor提供的工具集[^1]。 ```r if (!requireNamespace("BiocManager", quietly = TRUE)) install.packages("BiocManager") BiocManager::install(c("scater", "SingleCellExperiment")) library(scater) library(SingleCellExperiment) ``` #### 数据准备 假设有一个CSV文件作为外部输入源,其中包含了基因表达矩阵或其他类型的生物学测量值。这类表格通常由列代表样本而行对应特征(如基因)。下面展示了一个简单的例子来说明如何读取此类结构化的文本文件: ```r # 设置工作目录至包含目标文件的位置 setwd("/path/to/your/data/folder") # 加载csv格式的数据框 data <- read.csv(file="example_data.csv", header=TRUE, row.names=1) head(data) # 查看前几条记录确认内容正确无误 ``` 如果面对的是更复杂的文件形式或是特定平台产生的专有格式,则可能需要用到专门设计的函数或库来进行解析转换操作。例如,当涉及到FASTQ序列文件时,可借助于`ShortRead`这样的专用扩展模块完成初步预处理任务;而对于CEL芯片扫描图像的结果解读而言,`affy`则是更为合适的选择之一[^4]。 #### 处理特殊格式 针对某些特殊的实验技术所生成的独特输出文档——比如GEO数据库中的SOFT/Series Matrix系列描述符或者是SRA存储库里的SRR编号关联压缩包等情形下,还可以考虑采用官方API接口或者第三方脚本辅助实现自动化获取流程,并进一步利用相应的解析器将其转化为适合下游计算使用的标准模式对象以便后续深入探究其内在规律特性[^3]。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值