R数据分析:反事实框架和因果中介的理论理解

其实很早之前给大家写中介分析的做法的时候我也有思考过当中介变量或者因变量不是连续变量的时候,中介怎么做?或者说这个时候中介的结果如何解释?当时反正是一直没有太想明白这些问题,毕竟这些情况在发表的文献中也较少见,也就稀里糊涂过去了。

近期又被好多同学多次问及这些问题。想着逃避不过去了,试着看些文献给大家写写,而且我看中文的关于这些方面的讲解的资源也很少,希望我写下的东西能给大家一些启发。

传统中介方法

写反事实框架之前我们先回顾传统的中介做法,就是下面4步,其中第一步可以省略不要:

我们期望通过分析知道暴露对结局的作用有多大部分是被中介变量介导的。分析方法包括两种:

一种是difference method:

另外一种是Product method:

通过这两方法我们就计算出来了中介效应。但是比如说我的中介变量是一个二分类变量这个时候因为两个回归方程是不一样尺度的,一个线性回归,一个逻辑回归,这个时候再用上面的方法就完全是讲不通的。

Traditional mediation analysis defines direct and indirect effects in terms of linear regression coefficients. It is unclear how these traditional effects are estimated in settings with binary variables

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

公众号Codewar原创作者

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值