漫步最优化三十八——非二次函数最小化



穿


线




You are the music in me.
——

与牛顿法一样,共轭方向法也是来自于凸二次问题,但是既能用于二次问题也能用于非二次问题。基本的假设是在不断的迭代过程中,目标函数一直在减小,那么我们能够达到解的邻域。如果解的附近 H 是正定的,那么原则上来讲最多 n 次迭代就能收敛,为此共轭方向与牛顿法一样是二次终止的,收敛的速度是二次的,即收敛阶数为二。

对于非二次问题,共轭方向有时候会比较低效,尤其是初始点远离解的时候。这时候前面不可靠的数据会累积到当前的方向向量,这是因为它们是基于过去的方向进行计算的。对于这种情况,解的轨迹可能在参数空间的次优区域徘徊,进展会变慢。这个问题是可以克服的,那就是周期性的重新初始化,也就是每n次迭代后重新初始化,这样就消除了前面不可靠的信息。大多数情况下当前方向累积的信息是比较可靠的,抛弃他们可能增加运算量,但是不管怎样,这样做增加了算法的鲁棒性,所以这点代价是值得的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值