结构光系统标定的方法实际上还挺多的,我只讨论分析我读过且实现过的两种,两种方法都比较经典、应用较多、速度较快且操作简便的。这篇文章会讨论第一种,基于多项式拟合的结构光系统标定。当然这名字是我自己给它取的,如果不合适的话 ,也请见谅。
基于多项式拟合的结构光系统标定
按我的理解来说,基于多项式拟合的结构光系统标定,是将本需要直接测量的结构光系统中的长度值,隐式地表达在一个多项式中,同时引入经典的摄像机小孔成像模型,结合张正友摄像机标定法,从而获得待标定的相位——深度映射中的相关参数,以恢复被测物体的三维形貌。
实际上,研究者对基于多项式拟合的结构光系统标定提出了许多种不同的系统模型和标定方法,这里要讲的结构光系统标定方法是由达飞鹏和盖绍彦提出的,参考文献[1]是原文,[2]后来他们出的书,其实是一样的。这个模型和标定方法具有较高的速度和可操作性。我在这尽可能详细地按照我的理解来分析他们的模型,以及实际操作计算中,并不需要做的文章里面一样复杂,可以用些工具简化中间步骤的计算,所以有些计算会和文章不一样,但道理是一样的。
这个系统模型要引入摄像机小孔成像模型,以及张正友标定,在这文章里我就默认各位读者都熟悉成像模型和相机标定了,这里直接用,而不会去介绍为什么,有需要就自己网上搜吧,这方面的解读多得数都数不过来。
系统模型
该方法主要建立摄像机坐标系和被测物体上某点的相位、相位和世界坐标系之间的关系。该系统模型区别于标准结构光系统模型,对摄像机和投影仪的摆放位置没有严格的要求。
、
分别表示世界坐标系和摄像机坐标系,
组成摄像机成像面坐标系,
为投影中心,
为被测物体上一点。其中世界坐标系
是根据投影仪的位置建立的,参考平面
平行于投影平面,
轴平行于正弦条纹的条纹方向,
轴过投影中心。在该模型中,通过旋转矩阵
和平移矩阵
描述世界坐标系
和摄像机坐标系
之间的转换关系,通过小孔成像模型描述成像平面和摄像机坐标系之间的关系,如:点
在世界坐标系中坐标为
,在摄像机坐标系中坐标为
,在成像平面上的坐标为
,那么