许俊林博士生答辩公告
浏览次数:175日期:2021-09-06编辑:研究生秘书
学位论文简介
单细胞RNA测序 (single-cell RNA-sequencing, scRNA-seq) 技术可以更好地帮助我们从更高的分辨率和时空结构上对生命进行解码,准确的反映细胞间的异质性。人体是由多种类型的细胞组成的一个极其复杂的个体。通过单细胞测序技术可以使得我们更加清晰地对人体疾病进行研究。然而,scRNA-seq数据具有海量、维度高和噪音大等特点,使得已有的传统的机器学习算法难以有效地处理和分析scRNA-seq数据。因此,发展高效的机器学习算法,对scRNA-seq数据进行处理和分析,对我们了解人体疾病的发病机制及其治疗具有重大意义。因此,在本文中,我们对scRNA-seq数据进行了深入研究,主要研究内容和创新工作如下:
-
scRNA-seq技术通过将一堆细胞精细到单细胞水平,为RNA-seq测序研究带来了新的领域。scRNA-seq技术提供了强大的工具,可确定成千上万个单个细胞的精确表达模式,破译细胞异质性和细胞亚群等。然而,由于各种技术噪声,例如,存在”缺失”事件 (即,过量的零计数),scRNA-seq数据分析仍然具有挑战性。通过考虑细胞和基因之间的关联,我们提出了一种新颖的基于协作矩阵分解的方法,称为CMF-Impute,用于估算给定scRNA-seq数据表达矩阵的缺失项。我们测试了CMF-Impute模型,并将其与其他五