双目匹配算法的原理: 以待匹配点为中心的矩形窗口作为匹配基元,在视差搜索范围内找到最相似的窗口。但是,场景点在左右图像中并非总是一致的,清晰的!因此,此类场景很难找到正确的相似窗口。
从画质角度出发,双目相机的画质应当尽可能的满足以下要求:
- 画面清晰,不管是逆光还是白天大照度,夜晚低照度,还是说在路灯情况下,要求图像具备高对比度。
- 双目视觉技术要求左右图像画质一致,比如畸变度,对焦度,对比度等参数越一致越好。现阶段的左右图像在像素级别存在一定的差异性,尤其是远处物体差异明显。曾经尝试过直方图均衡化等方法,但是效果不佳,从图像画质预处理角度,提升左右图像画质的一致性。
- 夜晚图像不能太暗,物体间要有对比度,保证左右图像的清晰性。由于夜晚光照大幅度降低,为了提升图像的清晰度,相机的曝光时间被拉长,但是图像噪点随之增多,运动模糊现象更加严重,干扰匹配。平衡夜间图像的增加图像对比度和去除噪声之间的矛盾。
- 在逆光条件下,应当尽量保证非逆光区域的清晰性,近处的景物车辆道路不能太暗。最大限度降低逆光影响,保证画质。
- 处理逆光雨雾等图像处理算法复杂度不能太高,应当便于在较低成本的硬件平台实现。
- 绝对同步,双目相机最基本的要求就是两个传感器要同时曝光。
由于双目ADAS属于视觉解决方案,因此,所有视觉难以解决的问题在双目产品上均会存在,尤其是很多极端场景:雨雪雾没有路灯的夜晚等等,极端场景下应当停止使用基于视觉原理的所有产品,以保证系统的高安全性。